

Learning Unity 2D Game
Development by Example

Create your own line of successful 2D games
with Unity!

Venita Pereira

BIRMINGHAM - MUMBAI

Learning Unity 2D Game Development by Example

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1180814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-904-6

www.packtpub.com

Cover image by Kerrie Woollhouse (kerriewoollhouse@hotmail.co.uk)

www.packtpub.com

Credits

Author
Venita Pereira

Reviewers
Clifford Champion

Adam Single

Kerrie Woollhouse

Commissioning Editor
Luke Presland

Acquisition Editors
James Jones

Rebecca Pedley

Content Development Editor
Poonam Jain

Technical Editor
Edwin Moses

Copy Editors
Sarang Chari

Gladson Monteiro

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Tejal Soni

Graphics
Ronak Dhruv

Production Coordinators
Kyle Albuquerque

Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Venita Pereira is hugely passionate about games having grown up on games since
she was 7 years old. She is a games connoisseur who enjoys all types of games—no
game is too big or too small—and a technology geek who enjoys all things technical.
She studied at the University of Pretoria and holds a Bachelor's degree in Information
Science, specializing in Multimedia, and over 7 years' experience working in the
gaming industry. She has worked on all platforms, including console, PC, and mobile,
on a wide range of genres.

Venita Pereira has worked for some of the biggest AAA companies, namely, Climax,
Team17 Digital Ltd., Ideaworks3D, Jagex, SEGA, and Full Fat and for some of the
biggest publishers: Activision, Square Enix, EA, and Hasbro.

Her softography includes Sonic Dash, Sonic Jump, Stellar Dawn MMO,
Transformers: Dark of the Moon, King of the Course Golf, Lara Croft and the
Guardian of Light, Alien Breed Trilogy, Leisure Suit Larry: Box Office Bust,
and Elveon.

With a big special thanks, I would like to dedicate this book to
Kerrie Woollhouse.

I would like to thank my mom, dad, and sister Michelle for all their
love and support. Thanks to the Packt Publishing staff for their
assistance through the process and the technical reviewers for their
feedback. I would also like to thank God, my family, and friends.

And finally to the little girl Isabelle Woollhouse with a big heart,
for believing in me!

About the Reviewers

Clifford Champion has a broad background in software engineering, with years
of experience spanning 3D games, Internet applications, and AI. He holds degrees in
Mathematics and Computer Science from UCLA and UCSD respectively. In the past,
he worked at real-time physics company Havok, and interactive media and design
company PlainJoe Studios. Currently, he is a member of the software team at zSpace
(http://zspace.com/), helping create interactive 3D displays and software for
classrooms, industry, and entertainment.

Clifford can be found on Twitter at @duckmaestro and welcomes discussion
on any topic.

Adam Single is a husband, father, professional developer, indie developer, lover of
music, and a gamer. He's the coder for 7Bit Hero; a programmer on the tech team at
Real Serious Games in Brisbane, Australia; co-founder, programmer, and co-designer
at Sly Budgie; and co-organizer of the Game Technology Brisbane Meetup.

Since entering the professional game development industry in 2011, Adam has
worked on numerous mobile games, including the Android hit Photon and a
preinstall game for specific Disney Japan handsets. He's been the programmer
on a team that created a huge, interactive display at Queensland University
of Technology's amazing multi-touch screen installation The Cube as a part of
Australia's first Digital Writing Residency. He has even worked on a team at Real
Serious Games creating large-scale, interactive simulations for the mining and
construction industries. All of this has been done using the Unity game engine.

Adam has a passion for the unique and engaging possibilities inherent in modern
technology. When he's not working on exciting new game mechanics for Sly Budgie,
he's experimenting with homemade VR using mobile phone technology and pushing
the exciting ideas behind 7Bit Hero's live music/multiplayer game interaction down
whichever fascinating path it may lead.

Kerrie Woollhouse is a very creative and artistic individual with 7 years
of experience in game development, web development, art, and photography.
She continues to follow her passions with high ambitions.

I would like to say a special thank you to the greatest inspirations in
my life, my amazing mum and dad, two beautiful sisters, and three
wonderful brothers. I would also like to thank Packt Publishing and
most of all a big thank you to Venita Pereira.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Getting to Know Unity 7

Overview 7
Game development's background 7
Introducing Unity 8
Setting up Unity 8
Creating a new 2D project 9
Unity Editor interface 11

Toolbar 12
Scene View 14
Game View 14

Project Browser 15
Creating assets 15
Searching assets 16
Setting favorites 16

The Unity Asset Store 17
Importing assets 17

Hierarchy 18
Parenting 18
Creating GameObjects 19

The Inspector 20
Adding components 21

Extra Views 22
Console 22

Animation 23
Sprite Editor 23
Animator 24
Profiler	 24

Summary 25

Table of Contents

[ii]

Chapter 2: Setting the Scene 27
Overview 27
What is a background? 27
Two methods to set a background 28

Setting a background using a static image 28
Importing our asset 28

Sprite settings within the Inspector 30
Texture Type 30
Sprite Mode 31
Packing Tag 31
Pixels to Units 31
Pivot 32
Filter Mode 32
Platform Settings 33
Applying our settings 34

Assigning our asset to a GameObject 34
The toolbar method 35
The quick alternative method 38

GameObject Inspector settings 39
Position background 39
Color background 39
Layer background 39

Setting a background using a tileset 40
Seamless textures 41
Corner pieces 41
The grid settings 41
Creating a prefab 41

The resulting environment 41
Camera settings 42
Setting the foreground 43

Summary 44
Chapter 3: Add Some Character 45

Overview 45
What is a sprite? 46
Creating a sprite 46

Image editing software 46
Sprite sheet 47
Raster versus vector 48
File formats 49

Importing a sprite 50
Slicing sprite sheets 51

Sprite Editor 52

Table of Contents

[iii]

Manual slicing 53
Adding and removing a selection area 54
Toolbar controls 55

Automatic slicing 56
Slicing type – automatic 56
Slicing type – grid 57

Texture atlasing 61
What is a texture atlas? 61
Sprite packer 62

Adding our character 63
Sprite Renderer 66
Animating a sprite 69
Animation Editor 70
Dopesheet 2D animation 70
Animator 72
Summary 73

Chapter 4: Code Control 75
Overview 75
Why do we need code? 76

Programming languages 76
Levels of programming languages 76

Machine language 76
Assembly language 77
High-level languages 77

Scripting languages 78
UnityScript versus C# versus Boo 79

Code fundamentals 81
Data types 81
Operators 82
Functions 83
Conditional statements 86

If...else 86
Using comments 87
Classes 87

Private versus public 88
Importing external libraries 88
Code editor 89

Hello world 90
Controlling the character 92
Destroying the enemy 94
Coroutines 99
Namespaces 100

Table of Contents

[iv]

Unity Scripting Reference 100
Summary 102

Chapter 5: What's Your Input? 103
Overview 103
Input versus output 103

Input in games 104
Output in games 105

Input types 106
Output types 107

Visual output 108
Audio 108
Controller vibration 109

Unity Input Manager 110
Detecting input 111
Buttons 112

OnGui 112
GUILayout.Button 112

Game controls 114
Raycasting 114

Summary 118
Chapter 6: Game #1 – Roguelike 119

Overview 119
What is Roguelike? 120
Adding a background 122
Animating the hero 123

The Walking Down animation 124
The Walking Left animation 126
The Walking Right animation 127
The Walking Up animation 127

Movement controls 128
Movement Controls Animator 128
Movement controls script 130

Randomly spawning enemies 136
Animating the enemy 138
Enemy movement 138
Shooting projectiles 141
Detecting collisions 143
Permadeath 144
End game result 145
Summary 145

Table of Contents

[v]

Chapter 7: Game #2 – Classic Arcade 147
Overview 147
Sponge antics 147

Our main character – Spongy 148
The bathroom 148
Adding Spongy 149
Moving left and right 150
Spawning grime 153
Spawning acid 156

Game conditions 158
Lives 158
Score 159
Time 159

Adding an HUD 159
Font style 160
Resource management 161
The completed game 163
Summary 164

Chapter 8: Game #3 – Endless Runner 165
Overview 165
Infinite 166
An agile ninja 166
The ninja character 167

Running 167
Jump and Slide 168
Add animator parameters 170
Animator states and transitions 170
Movement controls 172

Randomly repeating obstacles 175
Survival 178
Parallax scrolling 178
Add pizzazz with particle effects 180
Displaying the timer 181
The result 183
How to expand the game? 183
Summary 184

Chapter 9: Game #4 – Physics Fun 185
Overview 185
The basics of physics 186

Physics found in the real world 186

Table of Contents

[vi]

Physics 2D 187
What is Box2D? 189
Steps to create bodies 191
Let's simulate the world 194

The environment 194
Creating the scene 194
Creating the background 194
The foreground 195
Adding the props 196

Shooting the cannonballs 197
Creating the cannonballs 202

The final result 203
How do we extend it? 205
Summary 205

Chapter 10: You Are Ready! 207
Overview 207
Audio 208

Music 208
Sound effects 208

Saving and loading 209
Creating a trigger 209
Cameras 210
Multiplayer 210
Putting it all together 211
The	first	scene	 212
The galaxy 212
Platforms 213
Triggers 213
The lava 214
UFO beam 215

Adding audio 215
The camera 216
Saving and loading 217
Space Buddy the alien 217

Space Buddy script 227
Positioning 228

The second scene 228
The	final	result	 229

Deployment 232
Your journey ahead 233

Table of Contents

[vii]

A plethora of resources 234
Online resources 234
Offline	events	 235
Free resources 235
Hosting games 236

Social media 236
Summary 236

Index 237

Preface
Many of us enjoy games, are creative and imaginative, and want to be able to create
our very own games—now more than ever before. Whether it is simply for fun, out
of pure passion, or as a career, the game development industry is currently one of
the biggest, most rewarding, and most lucrative industries.

For this very reason, there are many analogies of game development being compared
to or synonymous with the gold rush. We all have a vision, but a lot of the time, we
either do not know how to go about it, or we go about it in the wrong way.

The aim of this book is to help beginners start on the right path by explaining game
development as a whole and then breaking it down into its simplest components,
making it easy to digest. Those already proficient in Unity will be able to learn the
new 2D features quickly and easily.

When creating games, there are always new things to learn and discover, and no
single book can teach everything because every one of us will want to create a huge
variety of game mechanics and scenarios. However, the book covers all the essential
foundations through a variety of genres so that by the end of it we will be able to
create any game that we so desire.

What this book covers
Chapter 1, Getting to Know Unity, takes a look at how to work with Unity's new 2D
workflow by creating a 2D scene using the new project option available. We will
then step through the Views that make up the Unity Editor interface.

Chapter 2, Setting the Scene, shows us how to work with the new 2D camera to
set up the scene with different types of backgrounds, either static or dynamically
using a tileset.

Preface

[2]

Chapter 3, Add Some Character, provides an overview on how to add a character
to the game by making use of the new sprite toolset. We will also learn about
2D animation by creating a simple idle animation for the character using the
new dopesheet feature.

Chapter 4, Code Control, goes through the core concepts of programming by creating
basic code in UnityScript that takes us from printing output to controlling a character
and destroying an enemy.

Chapter 5, What's Your Input?, teaches us all about the various input types and states.
We will then go on to learn how to create buttons and the game controls by using
code snippets for input detection.

Chapter 6, Game #1 – Roguelike, shows us how to create our first basic 2D game
in Unity with UnityScript. This game will include movement, collisions, triggers,
states, projectiles, boundaries, and randomly spawning entities.

Chapter 7, Game #2 – Classic Arcade, informs us about game conditions and how to
display them on the screen by implementing a HUD with all the UI elements in
a classic arcade game.

Chapter 8, Game #3 – Endless Runner, provides an insight into the new 2D parallax
scrolling in Unity and how to use it to create our own side-scrolling endless runner,
polished up with particle effects.

Chapter 9, Game #4 – Physics Fun, takes a look at the new Box2D physics in Unity
and how to use this to create a physics game similar to Angry Birds that simulates
real-world physics.

Chapter 10, You Are Ready!, prepares us for our onward journey with audio, feedback,
and deploying our game. We will use everything that we have learned throughout
the book to create a game similar to Doodle Jump. We will then be guided on our
onward journey in 2D game development with a selection of useful resources.

What you need for this book
This book can be read without any additional resources; however, we recommend
access to some physical lab resources to install Unity on and at least a trial version
of Unity. The first chapter walks us through downloading and installing Unity.

A reasonable lab setup can be one on a single physical host with at least a dual or
quad core processor and 8 GB (preferably) of RAM.

Preface

[3]

Who this book is for
If you are interested in creating your very own 2D games, even if you are a beginner
who is completely new to Unity or someone who has used Unity before and would
like to learn about the new 2D features of Unity, this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The Debug.Log() function is very useful for debugging/testing our games."

A block of code is set as follows:

function Update ()
{
renderer.enabled = false;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

acidInstance = Instantiate(acid, Vector3(Random.Range(-8, 8),7,0),
 Quaternion.Euler(new Vector3(0,0,0)));
acidInstance.name = "Acid(Clone)";
acidInstance.velocity = new Vector2(0, speed);

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to
File | New Project."

Warnings or important notes appear in a box like this.
Comments that appear with the code are also included
in such a box.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code and colored
images
You can download the example code and colored images for all Packt books you
have purchased from your account at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting to Know Unity
"Microsoft, which is now the biggest independent software company in the world,

was founded in 1975 by just two men. It goes to show that great oaks from little

acorns grow."

 – Cambridge Idioms Dictionary, 2nd ed.

 Cambridge University Press, 2006

Overview
In this chapter, we will briefly go through the following:

• Game development's background
• An introduction to the Unity engine
• How to work with Unity's new 2D workflow by creating a 2D scene using

the new project option available
• The Views that make up the Unity Editor interface

Game development's background
In the past, the business of creating games was either for a lone programmer in their
garage or an established game development company backed up by a publisher.
When game development was still in its early beginnings, the former was more
common; however, as the technology behind game creation improved, it became
more difficult and expensive for an individual to create even a simple game from
scratch. In order to do so, you needed to create a game engine—the core of a game
that runs all the different technological components needed to support a game.

Getting to Know Unity

[8]

Game engines were built from scratch for a specific game genre, and they took a long
amount of time, effort, and resources. It was a complex task that usually required
advanced knowledge of math, science, and programming. Although, since the
fundamentals of game development come down to the same principles, it is more
efficient to build upon the foundations instead of reinventing the wheel.

Therefore, game engines and game-authoring tools became readily available and more
general purpose for the mainstream public who were interested in pursuing game
development. Instead of worrying about the functionality, we can now concentrate
more on the gameplay.

Introducing Unity
Unity is a popular game engine because of its accessibility, simplicity, and vast
amount of features. It has a big developer community and a free indie version
available. Many successful games that have massive marketing budgets and are
developed for major platforms, from PCs and consoles to mobiles (also known
as AAA games in games industry lingo), have been made using Unity. More
importantly, it is very popular in the indie community. Many highly popular indie
2D games were made using Unity. A major feature of Unity is being able to create
your game once and then deploy it on every major platform.

Unity originated as a 3D engine, and as such has mostly been used to create 3D
games in the market. However, as there is such a high demand for 2D creation
tools with many 2D games being released, particularly with the popularity of app
development, the developers of Unity have just recently released tools specific to
2D creation in Version 4.3.

Setting up Unity
We are going to set up our Unity workspace in this section. To download and install
Unity, execute the following steps:

1. Go to http://unity3d.com/unity/download.
2. If we are installing Unity for the very first time, then we will need to sign up

for a Unity account first through https://store.unity3d.com/account/
users/new.

3. Click on Looking for an older version? under the Download Unity button.
4. We need to ensure that we select and download Unity version 4.3.4 for our

platform, whether it is a PC or Mac.
5. Follow the onscreen prompts during the installation.

http://unity3d.com/unity/download
https://store.unity3d.com/account/users/new
https://store.unity3d.com/account/users/new

Chapter 1

[9]

6. Make sure not to uncheck the default components as we will need them
when creating our games.

7. Once we have successfully installed Unity, we need to run the application.
Run the Unity.exe application.

Creating a new 2D project
We will now create our first 2D project in Unity by executing the following steps:

1. Go to File | New Project.
If this is the very first time that we have installed Unity, then we will not see
the File menu option, but instead, we see the Unity - Project Wizard window.

2. The Unity - Project Wizard window is similar to the ones in previous
versions with the exception of an added drop-down box that now allows 2D.

3. The Create New Project tab will be selected by default. If it is not already
selected, then click on the tab to create a new project.

4. Select the location on your computer where you would like to save your new
project files either by entering it directly in the Project Location textbox or
finding it via the Browse button.

5. From the Setup defaults for: drop-down box, select 2D. This will ensure that
our project is set to 2D mode.
The following screenshot shows what we will see on the screen:

Getting to Know Unity

[10]

6. Now, we simply click on the Create button to create our new 2D project
in Unity.

Once we have created our new 2D project, we can also toggle the view from 3D
to 2D and vice versa. Whenever we wish to do so, we just click on 2D in the Scene
View control bar, as shown in the following screenshot:

We can select 2D before we create our new 2D project or any time after we have
created it by going to Edit | Project Settings | Editor.

This will open the Editor Settings toolbar within the Inspector tab, which by default
is on the right side of the program. We can select the 2D mode by selecting 2D within
the Default Behavior Mode drop-down box as shown in the following screenshot:

Chapter 1

[11]

Unity Editor interface
We are now going to familiarize ourselves with the Unity Editor interface so that
we know our way around Unity.

The main editor window is made up of Views. Views are all the tabbed windows
that you see, namely:

• Toolbar
• Scene
• Game
• Project Browser
• Hierarchy
• Inspector
• Other Views that are not shown by default

We can see the main editor with all of its Views, which were just mentioned, in the
following screenshot:

Getting to Know Unity

[12]

Toolbar
At the very top of the editor interface, we have all the controls.

The Transform tools are used with Scene View to drag the camera, move the position
of objects, and rotate and scale objects in the scene respectively, as shown in the
following screenshot:

When we add an object to our scene and select it, we can see arrows protruding
along the x and y axes from our object. These arrows are called Transform Gizmos,
and we use them to move, rotate, and size our objects.

Selecting each of the following Transform tools changes the gizmo (the bounding
box on your selected object) in Scene View, as shown in the screenshot that follows
the description of the tools:

• Translate (the shortcut key is W): This is used to move the selected object
in our scene

• Rotate (the shortcut key is E): This is used to rotate our selected object
• Scale (the shortcut key is R): This is used to increase or decrease the size

of our object

Transform Gizmos, viewed 26 June 2014, http://docs.unity3d.com/412/Documentation/
Manual/PositioningGameObjects.html

http://docs.unity3d.com/412/Documentation/Manual/PositioningGameObjects.html
http://docs.unity3d.com/412/Documentation/Manual/PositioningGameObjects.html

Chapter 1

[13]

The screenshot is in 3D because even in 2D, we can still move objects
along the z axis.

The Transform Gizmo toggles are used to toggle the position of the Transform
Gizmos. Center will position them at the center of the object, whereas Local will
position them relative to the object's rotation. The toggles are displayed in the
following screenshot:

The following screenshot shows the control that is used with Game View to play,
pause, and step through the game in the editor:

The Layers drop-down box is used with Scene View to choose which objects we
want to see in the editor's Scene View according to the layer. It is useful when we
are editing a complicated level or scene. We select it by clicking on the drop-down
menu displayed in the following screenshot:

The Layout drop-down menu enables us to set up the positioning of the interface
to our own liking. Depending on our screen's resolution and size, we may prefer
one layout over another and should therefore try each one out by clicking on the
drop-down menu shown in the following screenshot:

Getting to Know Unity

[14]

Scene View
Scene View is the area where we will interact with our GameObjects such as
cameras, backgrounds, the player, enemies, and so on. It is within this view
that we can position and transform our GameObjects.

The following screenshot displays our Scene View:

Game View
Game View displays the final published game rendered from the camera view.
This is where we test out our game.

To achieve this, we simply press the play button and see our game as in the
following screenshot, where an example game has been loaded:

Chapter 1

[15]

Project Browser
Assets are image files, audio files, programming scripts, and so on that make up
the reusable mix-and-match pieces of our game.

Project Browser contains all the assets; it lists them in a project and allows us to
view and organize them in folders, as shown in the following screenshot:

In the left panel are the folders that contain our assets in an ordered
structure/hierarchy that we will create when creating our games.

Different assets in our project such as materials, animation, audio, and so on
should be placed in their own folders, often in further subcategories for clarity.

On the right panel are the asset files from the selected folder, and they can be
edited here.

Creating assets
When making a game, some assets will be created outside of Unity (such as in an
image-editing or sound-recording program). Those assets will be imported into Unity
to be used, while other assets can be created inside of Unity, such as cameras, game
objects, scripts, and animations.

Getting to Know Unity

[16]

When we click on Create, at the top of the left panel, we are given a list of assets that
we can create, as shown in the following screenshot:

Searching assets
We can easily search for any asset from the Project Browser toolbar. This is done by
either selecting the label button to search by its name or selecting the type button to
search by its type. Depending on which button we select, we type either the asset's
name or type in the search bar and then press Enter to search.

Setting favorites
Assets that are used often can be set as favorites by clicking on the star button. For
quick and easy access, we can then search for or filter them under the Favorites
drop-down menu in the left panel.

Chapter 1

[17]

The Unity Asset Store
Asset Store is an online marketplace created by Unity for independent game
developers to buy and sell reusable assets to make games, as shown in the
following screenshot:

Any assets purchased or downloaded from Asset Store will be shown and can be
accessed from Project Browser.

Importing assets
To load our assets from the Asset Store into the Project Browser, we need to click on
the Download button on the chosen asset within Asset Store.

The Importing package pop-up box will appear within the Unity editor, allowing
us to tick the assets we would like to import. Once we are done selecting, we simply
click on the Import button to import the assets into our project.

Getting to Know Unity

[18]

Hierarchy
The Hierarchy tab lists all the GameObjects in the current scene. Scenes are made
up of game objects, and game objects make use of assets. We can easily access any
GameObject in the scene from the Hierarchy tab for quick editing.

The following screenshot displays the Hierarchy view with the game objects in black
and prefabs in blue:

Parenting
Parenting is a hierarchical concept that affects the visual pose of game objects in
relation to another object's pose, for instance, the parent's pose. A child's translation,
rotation, and scale will be relative to the parent. So, we only need to edit the parent's
relative transform data and the children will inherit them. This is useful for animating
multiple separate images by changing their position. For instance, if we have an arm
and a hand image, then we make the arm the parent and the hand the child, once we
do this, we only need to move the arm and the hand will move in relation to it.

Chapter 1

[19]

Creating GameObjects
When we click on Create, we are given a list of preconfigured GameObjects that we
can create, as shown in the following screenshot:

Although the list may appear daunting, we will not need to concern ourselves
with many of these GameObjects as most of them are used for 3D games. The only
GameObjects we will be using are the Particle System, Camera, GUI Text, and Sprites.

Getting to Know Unity

[20]

The Inspector
Game objects are the living things in our games, and the different components are
what bring a game object to life in different ways. For example, the Audio Source
component allows a game object to emit a sound, while a Script component allows
a game object to behave intelligently or respond to user input.

When we click on a GameObject within our scene, the Inspector provides detailed
information about that object. It displays all the components that have been added to
the selected GameObject, such as animations, colliders, scripts, and so on, as well as
all the attributes within the components. This allows us to directly modify its fields
and their respective values from the Inspector.

We can also change the values during runtime to test the effect in
real time while running the game. However, this is only used to
temporarily test the effect of the changes. Once we stop the game,
the values will revert to their previous settings. Therefore, only the
changes we make while not running the game are saved instantly.

We can reset any changes by right-clicking on the component and selecting reset.

By clicking on the red, green, and blue cubes in the top-left corner, we can set an icon
to label our GameObject within Scene View, making it easier to find them.

Whenever we do not want a component active at any time, we can simply deselect
the component by deselecting the box. We do this to temporarily turn it off without
losing its settings, because had we deleted it, then we would have lost any changes
made to the default settings.

Chapter 1

[21]

Adding components
To add a component to the selected GameObject, we click on the Add Component
button. When we click on Add Component, we are given a list of components that
we can create, as shown in the following screenshot:

We can also remove a component by right-clicking on it within the Inspector and
selecting Remove Component.

Getting to Know Unity

[22]

Extra Views
Other than the six main Views of the editor interface that are shown by default,
there are extra Views that are also very useful. We can select them by clicking
on the Window menu:

Console
The Console View is useful when you write code to output messages and to
check for any problems with the code. Any warnings and errors in the code
will be displayed here.

These messages only appear to us developers to test and debug our game and will
not be shown in the final game to the players. The following screenshot displays
the Console View:

Chapter 1

[23]

Animation
The Animation View is used to animate the GameObjects in our scene using an
animation timeline with frames, as shown in the following screenshot:

We will discuss this in great detail in the later chapters.

Sprite Editor
Sprite Editor enables us to separate merged images (known as a sprite sheet or The
sprite atlas) from a single image (or sprite as it is often called in the world of 2D).
It is useful, for example, for animations and when we want different parts of our
character to move independently, as shown in the following screenshot:

Getting to Know Unity

[24]

Animator
Animator controls the order of an animation. It provides an easy way to set
up animations by visually representing the flow of the animation, such as the
completion of a jump animation leading to a standing animation. It enables us
to create animation states. We can then order the flow of animations and decide
when one animation state transitions or blends into the next state, as shown in
the following screenshot:

Profiler
Profiler (a feature that comes with the Pro version) is used to check on a game's
performance (how fast it runs) and on what could be slowing it down with regards
to memory usage, object count (total objects), draw calls, and so forth. Different things
can slow down a game, such as too many sprites on the screen at the same time, very
complex AI or scripts, and so on.

The standard benchmark for a game is to run at 60 FPS (frames per second). It is
recommended that anything less than this should be optimized and improved. This
ideal frame rate varies from genre to genre and platform to platform. For instance, an
RPG game is generally acceptable at 30 FPS, whereas a racing game is best at 60 FPS.

Chapter 1

[25]

The following is a screenshot of Profiler:

Unity Profiler, viewed 25 June 2014, http://www.gamasutra.com/blogs/
WendelinReich/20131119/203842/C_Memory_Management_for_Unity_

Developers_part_2_of_3.php

Summary
In this chapter, we went through the background of game development and were
introduced to the game engine we will be using, namely Unity Engine.

We also learned how to work with Unity's new 2D workflow by creating a 2D scene
using the new project option available and then stepped through the six main Editor
Views that make up the Unity Editor interface. We also went through the additional
Views that are available.

In the next chapter, we will look at setting up our own scene. We will set up all the
elements that make up our environment, namely the camera and the background.

http://www.gamasutra.com/blogs/WendelinReich/20131119/203842/C_Memory_Management_for_Unity_Developers_part_2_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131119/203842/C_Memory_Management_for_Unity_Developers_part_2_of_3.php
http://www.gamasutra.com/blogs/WendelinReich/20131119/203842/C_Memory_Management_for_Unity_Developers_part_2_of_3.php

Setting the Scene
"In many 2D tile-based games, the background is very unobtrusive. It is typically

a very large distance from the game plane, meaning that there is no ambiguity as to

whether or not something is part of the background or the playground. All of this

amounts to a very clear level."

 – Chris McEntee, 2013

Overview
In this chapter, we will go through the following elements that will create our scene:

• What is a background?
• Two methods used to set a background:

 ° Setting a background using a static image
 ° Setting a background using a tileset

• The resulting environment

What is a background?
A background is the image or images that are furthest from view, usually behind
the characters and objects in the game.

It adds a scene to our game, an environment that our game will take place in,
to immerse the players in the game world.

Setting the Scene

[28]

Sometimes, a background can be static (non moving) and most of the time the player
cannot interact with the background as it is more of a visual element to provide the
setting, tone, and mood of the game.

The following image represents a background:

Two methods to set a background
We will learn how to set up our scene with a static background using two methods:

• Using a static image
• Using a tileset

Setting a background using a static image
When we want only a few images of different sizes to make up our background,
we use static images.

Importing our asset
First, we will need to either create an image or select a pre existing image that we
will be using as our background by finding its location on our PC, as shown in the
following screenshot:

Chapter 2

[29]

For clarity and organizational purposes, it is best to create a Sprites Folder within the
Project Browser with a subfolder called Environment to store all the assets that we
will use to create our game environment.

To create the subfolder, we right-click on the Assets folder in the left-hand side
panel of the Project Browser and go to Create | Folder, or we can click on the Create
button at the top of the left panel.

We then drag our image into the Assets section of the Environment subfolder within
the Project Browser, which is shown in the following screenshot:

Setting the Scene

[30]

Sprite settings within the Inspector
When we select our imported asset from within the Project Browser, the Inspector
will get updated to display the sprite's settings.

The following settings will appear:

• Texture Type
• Sprite Mode
• Filter Mode
• Platform Settings

These settings will appear as shown in the following screenshot:

Texture Type
When we click on the drop-down box next to Texture Type, we are presented with
the types of textures that Unity makes use of, as shown in the following screenshot:

Chapter 2

[31]

As we are working in 2D, we would like to use an image, and therefore, a sprite, as
our background. Thus, we will select Sprite as our Texture Type. It is important to
select the correct type as each type will update and display unique settings within
the Inspector that are dependent on the Texture type.

Sprite Mode
For the Sprite Mode, we are presented with two options: Single and Multiple,
as shown in the following screenshot:

We will choose Single as we want to create only one sprite that uses the whole image.

Packing Tag
We will leave the Packing Tag box blank because we do not need to concern
ourselves with this setting. It is an advanced pro-only feature used for automatic
sprite packing, otherwise known as texture atlasing.

Texture atlasing is used when separate sprites/textures are packed together to form
one sprite/texture to improve frame rate (performance) when drawing many sprites
per frame.

The following screenshot displays the Packing Tag box:

Pixels to Units
The Pixels to Units property is used when we import an image and it either appears
much smaller or much larger than intended. If the image appears much larger, we
set this value lower; otherwise, we set this value higher. By default, the value is set
to 100, as shown in the following screenshot:

Setting the Scene

[32]

Pivot
The Pivot property sets the point on the image from where you would like to move
it. All the values are preset locations with the exception of Custom, which allows
us to choose any point on the image by dragging the anchor point to our desired
location within the Scene View. We can select whichever we prefer; however, to be
able to center the image easily and quickly, we will set the Pivot property to Center,
as shown in the following screenshot:

Filter Mode
The Filter Mode setting determines how the texture used for the sprite gets filtered.
Have a look at the following list of settings:

• Point: This is the cheapest (relative to the cost on computer performance) and
best for performance, but is used for smaller images that are further away as
the image will look blocky if you view it up close.

• Bilinear: This is more expensive than Point; however, it smoothens the image
so that it is not blocky up close.

• Trilinear: This is similar to Bilinear in that the image is no longer blocky up
close; however, it is the most expensive on performance as it also smoothly
transitions mipmaps. Mipmaps are used to improve performance when
many textures are used. When a texture is far from view, then it will use a
low resolution and swap to textures of higher resolution the closer it comes
into view.

Bilinear is selected by default. As we are not making use of mipmaps, we need to
only select Bilinear as displayed in the following screenshot:

Chapter 2

[33]

Platform Settings
There is the option to set specific settings for each platform (the Web, mobile, and
PC) that we would like to target for our game by selecting the relevant icon as well
as ticking the Override option. These settings will then override the default settings,
which are the Max Size and Format settings, that we are now going to set within the
Default tab, as shown in the following screenshot:

We will leave it on Default so that it will apply the same settings for all platforms.

Max size
The Max Size setting sets the maximum size when importing the texture for our
background sprite. Different platforms will require different resolutions. We will
use a high resolution of 1024, as shown in the following screenshot:

Format
There are several options available that will represent the image internally:

• Compressed: This is the default and is the most commonly used option,
being the smallest in size

• 16 bits: This option is for images that are larger in size and higher in quality
than Compressed, but lower in quality when compared to Truecolor

• Truecolor: This is the highest quality option, but the largest in size

Setting the Scene

[34]

As we want our game to run on all platforms, we will select the Compressed format
as shown in the following screenshot:

If we were targeting only high-performance platforms, then we could select the
higher quality formats.

Applying our settings
When we are done and happy with our settings, we need to make sure to click on
Apply so that our settings are saved and take effect. This completes the import
process, and we are now ready to use the sprite in our scene.

Should we wish to go back to the default settings, we can click on Revert instead.

Both buttons are displayed in the following screenshot:

Assigning our asset to a GameObject
Now that we have imported the asset that we would like to use as our background
and have set all the settings that we would like to use for it, we can assign the asset
into a GameObject so that we can make use of it within the game.

Once an asset is assigned into a GameObject, we can then view and manipulate
it within the Inspector and Scene View as well as view the end result within the
Game View.

To convert our asset into a GameObject, there are two ways: the toolbar method and
the quick alternative method.

Chapter 2

[35]

The toolbar method
The first way is to select the GameObject drop-down box from the top toolbar by
going to GameObject | Create Other | Sprite.

We will be presented with what is shown in the following screenshot:

We click on Sprite as we will be working with sprites to create our background.

Setting the Scene

[36]

The GameObject we have just created will be empty within the Scene View, as shown
in the following screenshot:

You can name the GameObject and move it; however, it has no visual appearance yet.

We need to assign the sprite asset we created to the GameObject by clicking on the
circle next to Sprite, as shown in the following screenshot:

Once we have clicked on the circle, we will get the Select Sprite box.

Chapter 2

[37]

Under the Assets tab, we can find and select our asset, as shown in the following
screenshot:

Setting the Scene

[38]

The quick alternative method
Another alternative to assigning the sprite is by dragging the sprite from the Project
Browser and dropping it into the Sprite box just before the circle, as shown in the
following screenshot:

The quickest and simplest way to create a Sprite GameObject is to simply
drag the asset sprite from the Project Browser into the Scene View.

All methods should result in what's shown in the following screenshot:

Chapter 2

[39]

As you can see, our centered pivot anchor point that we set during the asset import
settings stage is now displayed, and should we change the pivot then the anchor
point will update within the Scene View.

We can now move the GameObject and its image in the Scene View from its center.

GameObject Inspector settings
The settings that we set for the GameObject within the Inspector will take effect
within the Scene View.

Position background
To position the background so that it fits perfectly within the 2D Camera View,
we go to Inspector | Transform | Position and set the following values:

• X: 0
• Y: 0
• Z: 0

This sets the image's central anchor point to the origin of the Scene View's coordinates.

If the image is smaller than the Camera View, then we can scale the image so that it
is large enough to fill the entire view.

The size of the Camera View will depend on the platform that we have chosen to
build and run our game on in addition to our camera scale settings. The platform
can be changed by going to File | Build Settings….

Color background
We also have the option to color the background or use advanced artistic effects by
choosing shaders to use on the material of our image. Unity comes with a basic set
of shaders.

Layer background
We can leave our background on the default layer as it needs to be beneath all the
images that we will create on layers above it. This layer is known as the Sorting layer.

Setting the Scene

[40]

Setting a background using a tileset
Tilesets are sets of tiled images that are used to create the scene, as shown in the
following image:

Some games, especially platform games, puzzle games, and sandbox games use
tilesets to create their backgrounds.

Using a tileset makes it easier to create and edit those types of games because the
tiles get reused to make the scene in different variations.

Tilesets require the following:

• Seamless textures
• Corner pieces
• Grid
• Prefab (not required, but it helps make the creation process much

more efficient)

Chapter 2

[41]

Seamless textures
The images that will be used as tiles within a tileset need to be seamless and of equal
or matching size. This is so when you duplicate them and then arrange them next to
each other or above one another, they will then blend nicely together to create the
bigger picture.

Corner pieces
Depending on the type of game we would like to create, we will more than likely
require corner pieces when creating a tileset to round off the edges of a section of
the background and break up the repetition. We need to ensure that the corner
pieces can be rotated and fit together from all angles.

The grid settings
To easily and accurately place our tiles, we need to work with a grid that the tiles
snap onto so that the tiles fit and match together properly.

To edit the Unity grid settings as per our own liking, we go to Edit | Snap
Settings…. We then hold Crtl + drag to place and snap our tiles onto the grid.

Creating a prefab
A prefab is a reusable GameObject. When we add a prefab to the scene, then an
instance of that GameObject is created. This means that if we make any changes
to the prefab, then all the instances will automatically change, saving us a lot of
time. Therefore, when dealing with a tileset, it is a good idea to create a prefab of
each unique tile by dragging the GameObject in the Hierarchy tab into the Project
Browser. The name of your GameObject in the Hierarchy tab will turn blue to
signify that it is now a Prefab.

The resulting environment
With the new 2D features of Unity, the 2D camera is already set. This makes it easier
to set up our scene as we need only worry about positioning the background and
foreground elements and layering them.

Setting the Scene

[42]

Camera settings
We will go through the camera settings to understand them. When we click on the
Main Camera option in our scene, we get the following settings within the Inspector
tab as shown in the following screenshot:

The following are the parameters of the Main Camera option:

• Clear Flags: This sets which parts of the screen are to be cleared.
• Background: This selects which color to display behind all the objects in our

scene if we have not added a skybox, background, or image that takes up the
whole screen.

• Culling Mask: This selects which layers are to be rendered by the camera.

Chapter 2

[43]

• Projection: We select Perspective if we want to work in 3D and
Orthographic to set our camera mode to 2D.

• Size: This is the size of the camera in Orthographic (2D) mode.
• Clipping Planes: This sets the distances from the camera that we would like

to begin and end rendering.
• Viewport Rect: This consists of the camera's x and y coordinates followed

by its width and height.
• Depth: This is the draw order of the camera. Cameras with bigger values

will be drawn above cameras with smaller values.
• Rendering Path: This defines advanced rendering methods used by

the camera.
• Target Texture: This references the output of the Camera View to a Render

Texture (pro-only feature).
• Occlusion Cullling: This disables rendering of objects not seen by the camera
• HDR: This sets High Dynamic Range rendering. (An advanced

rendering technique—visual effect that reproduces a more dynamic
range of luminosity).

Setting the foreground
For the foreground, we go through the same steps as we did for the background,
the only difference being that we will need to set the foreground images to layers
above the background. As we set the background to 0 earlier, for the foreground
we set Order in Layer to 1 so that it is above the background, as shown in the
following screenshot:

Setting the Scene

[44]

The following screenshot shows an example of a complete scene, with the foreground
layers above the background layer:

Summary
In this chapter, we learned the purpose of a background in a game and the two
methods to set a background. Finally, we learned how all the elements make up
the resulting environment that creates our scene.

In the next chapter, we will add a main character to our scene and learn how to
create the animations that will bring it to life!

Add Some Character
"Animation can explain whatever the mind of man can conceive. This facility

makes it the most versatile and explicit means of communication yet devised

for quick mass appreciation."

– Walt Disney Company

"Believe in your character. Animate (or write) with sincerity."

– Glen Keane

Overview
In this chapter, we will learn how to add a character to our game using a sprite
by covering the following points:

• What is a sprite?
• Creating a sprite
• Importing a sprite
• Slicing sprite sheets
• Texture atlasing
• Sprite Renderer
• Animating a sprite
• Animation Editor
• Dopesheet 2D animations
• Animator

Add Some Character

[46]

What is a sprite?
A sprite is a 2D image or animation (sequence of images) that we can manipulate
on screen. The following image shows an example of a sprite:

Creating a sprite
In order to add a character to our game, we need to either use a pre-existing sprite
that we have rights to or create a sprite first.

Image editing software
To create a sprite we will need graphic design software or image editing software,
like the one shown in the following screenshot:

Chapter 3

[47]

There is a wide and diverse range of software of varying features, ease of use, and
prices. The most well-known and widely used image editing software in the game
development industry are: Photoshop, Xara, and Paint.NET. Paint.NET is free to
use and can be downloaded from http://www.getpaint.net.

Once we have downloaded the software, we create our character sprite. A character
sprite is a 2D image of a character and can be made of a single image or multiple
images. We will create our character from multiple images since it helps when
animating the character as the different body parts will be able to move independently.

Sprite sheet
A sprite sheet is an image consisting of separate multiple images. The following
screenshot shows a sprite sheet made up of multiple images for the parts of the body:

http://www.getpaint.net

Add Some Character

[48]

Raster versus vector
When we create a sprite, we need to ensure that we use a raster image as Unity does
not support vector images.

A raster image, also known as a bitmap, is an image made up of bits that translates
into pixels defined according to a grid of pixel (picture element) color values. Vector
images are without grids and use a mathematical formula that defines points and
paths that connect to form an image. Thus, when magnified, a raster image looks
very pixelated whereas a vector image looks very clear.

The following image clearly shows the difference between a raster image and a
vector image:

Vector vs raster, viewed 22 June 2014, http://en.wikipedia.org/wiki/Vector_
graphics#mediaviewer/File:VectorBitmapExample.svg

http://en.wikipedia.org/wiki/Vector_graphics#mediaviewer/File:VectorBitmapExample.svg
http://en.wikipedia.org/wiki/Vector_graphics#mediaviewer/File:VectorBitmapExample.svg

Chapter 3

[49]

File formats
Unity supports the following 2D formats: PSD, TIFF, JPG, TGA, PNG, GIF, BMP,
IFF, and PICT.

We will make use of PNG because it is the most used, lossless image compression
format, and it supports varying levels of alpha transparency per pixel, which can
be useful when our sprite features things like tinted glass.

Lossless image compression means that the image does not lose any quality
(pixel information) when its size on disk storage (not size in dimensions) has
been compressed. Alpha transparency is needed as we want the background
to appear through our sprites.

The following image has a checkerboard background (indicating transparency
in most applications):

We can get this image from the following URL:

https://www.assetstore.unity3d.com/#/content/11228

https://www.assetstore.unity3d.com/#/content/11228

Add Some Character

[50]

We save the image in the PNG format as shown in the following screenshot:

Now that we he have created our sprite, we can import it into Unity.

Importing a sprite
To import a sprite, we repeat the process that we followed when importing a
background. We drag the sprite from its location on our PC into the Project Browser
and then set its Texture Type option to Sprite within the Inspector view. The only
difference is that this time, we set the Sprite Mode drop-down box to Multiple since
our single character sprite is made up of multiple images. Once we are done setting
the import settings, we hit Apply.

Chapter 3

[51]

All the settings are shown in the following screenshot:

Slicing sprite sheets
If we had used a single image in our sprite, then we would not have needed to slice
the sprite sheet. As we are using multiple images, we need to slice the sprite sheet
to separate the clubbed images into their individual images.

Add Some Character

[52]

Sprite Editor
To slice a sprite sheet, we need to open the Sprite Editor either by selecting Sprite
Editor within the Inspector toolbar during Import settings or by first selecting the
image in the Project Browser as shown in the following screenshot:

Chapter 3

[53]

We then navigate to Window | Sprite Editor as shown in the following screenshot:

Manual slicing
To slice each image into its own sprite manually, we first drag and select the image
within the Sprite Editor window. A blue selection area box will then be displayed
as shown in the following screenshot:

Add Some Character

[54]

We resize the selection area by dragging and moving the handles on the corners of
the box to fit around one of the multiple images. We do the same for all the other
images within the sprite sheet. We can also name, set the size, and position the box
within the Sprite box as shown in the following screenshot (Unity only supports
rectangular sprite cuts):

We need to name our sprites as we will refer to them when animating them and
coding scripts. This also makes it easier and clearer to view and find the sprite within
the scene and hierarchy. We can enter the x and y coordinates as well as the width
and height that we would like for the selection area within the Sprite settings. We
can also trim the selection area by clicking on the Trim button. This will resize the
selection area to surround the image much closer, removing unnecessary space.

Lastly, we can set the pivot location for the selection area by selecting our choice
from the drop-down box and then clicking on Apply at the top-right corner of
Sprite Editor.

Pivots are used to define the center position of a sprite and also its center of rotation.
The Custom Pivot choice allows a user to define a pivot location on the sprite that
offers more flexibility when needed.

Adding and removing a selection area
To create a new selection area, we simply click and hold anywhere within the sprite
sheet and then drag. A green selection area will appear. The more we drag, the larger
the size of the selection area. Once we release the mouse and therefore the selection
area, it will turn blue to indicate that we have created the selection area. We can then
resize and edit if we need to do any tweaks to it. The following screenshot shows
a new selection area being created with the green selection area box being dragged
to surround the moustache of the character:

Chapter 3

[55]

To remove a selection area, we simply select the one that we would like to remove
and then press the Delete button on our keyboard.

Toolbar controls
The top-right corner of the Sprite Editor window consists of a colored bar button,
which enables us to toggle the view of the image and its alpha channels. It also
contains a slider bar that controls the level of magnification of the image.

There are also the Revert and Apply buttons that allow us to apply or revert
all of our changes within the Sprite Editor window. The following is a screenshot
displaying the toolbar controls at the top-right corner:

Add Some Character

[56]

Automatic slicing
To save us time, Unity provides several options for the automatic slicing of the
sprite sheet.

The following screenshot shows the Slice drop-down box, which is at the top-left
corner of the screen and is used for automatic slicing:

Slicing type – automatic
To automatically slice our sprite sheet, we click on the Slice drop-down box,
which provides us with the options shown in the following screenshot:

We leave the Type drop-down box at its default option as Automatic as we simply
want to slice our sprite sheet automatically.

When set to Automatic, Unity decides where to place the selection area boxes that
separate the multiple images based on the full transparency surrounding the images.
It can tell where an image is by checking whether each pixel within the image is
opaque or slightly transparent; otherwise, if it is fully transparent, Unity can tell that
it is not part of the image and therefore surrounds it.

Chapter 3

[57]

As Unity can pick up very tiny pixels surrounded by transparent space, we can
increase the value of the Minimum Size box to ensure that it does not create many
tiny selection area boxes selecting tiny details individually. Therefore we will set
the value of Minimum Size to 4.

We can set the pivots for the automatically generated selection areas by selecting
the Pivot drop-down box. We will leave it at its default value Center as it is the
most used option and the easiest to work with.

The Method drop-down box has three settings as shown in the following screenshot:

If we created selection areas manually before selecting the automatic option, then
with the Delete Existing option, it will delete all the existing selection areas and
then add the newly created automatic selection areas.

The Smart option will either try to keep the existing selection areas or edit them
while also adding new selection area boxes.

The Safe option will add new selection areas together with the existing ones and
keep the pre-existing selection area boxes exactly as they are.

To ensure that we are only using automatic slicing, we will select Delete Existing
as our Method option.

Slicing type – grid
When we use a sprite sheet that is divided into equally sized images, then
we use the grid type for automatic slicing as this speeds up the image slicing
process significantly.

Add Some Character

[58]

We will most certainly use this when animating our sprites as shown in the following
screenshot, whereby the sprite sheet is comprised of the character's walk animation:

We can download the image from the following URL:
http://freeartsprites.com/roguelike/

http://freeartsprites.com/roguelike/

Chapter 3

[59]

When we select the Grid option from the Type drop-down box, then we are
presented with the following screenshot:

The Pixel size setting allows us to set the x and y coordinates for the selection areas
of each individual image. Once we are satisfied with the sizes, we press the Slice
button. These sizes will get repeated as a grid over the image within the Sprite
Editor window as shown in the following screenshot:

Once we are satisfied with the automatic slicing, we click on the Apply button
(under the toolbar controls previously mentioned) to confirm and slice up the
single image into multiple sprites.

Add Some Character

[60]

To view the separated images, we click on the arrow beside the original sprite sheet
within the Project Browser as shown in the following screenshot:

Upon clicking on the arrow, the Project Browser will display the multiple separated
sprite assets we have created as displayed in the following screenshot:

Chapter 3

[61]

Texture atlasing
When working with sprites, it is easier and more convenient to use a separate image
(otherwise known as a texture file) for each character. However, the image will
usually have a lot of empty space surrounding it, and this takes up video memory
during runtime (when the game is running), which impacts performance. In order
to reduce the wastage and optimize performance, we make use of texture atlasing.
A technique called draw call batching that Unity and other engines use also helps
to improve the frame rate. It too requires texture atlasing particularly for PC games,
whereby a complex 2D scene would probably become CPU-bound.

What is a texture atlas?
A texture atlas packs several separate images (textures) into a single texture. The
following is an image representing a texture file that does not use texture atlasing:

The following image represents a texture file using a texture atlas:

Add Some Character

[62]

Sprite packer
To create a texture atlas, Unity now supports a sprite packer; however, this feature is
only available in the Pro version.

As texture atlasing is a pro feature, and the sprite packer makes it straightforward as
it automates the process for us, we will not go into the details of all the extra settings.

Basically, in order to convert our separate texture files into texture atlases, we
open up the sprite packer window by going to the main toolbar and navigating to
Window | Sprite Packer as shown in the following screenshot:

Chapter 3

[63]

The following screenshot displays the Sprite Packer window with all its options:

http://docs.unity3d.com/uploads/Main/SpritePackerMain.png.

When we click on the Pack button at the top-left corner, our texture atlas is created
automatically using all the default settings improving performance by saving all the
space that would have otherwise been wasted.

Adding our character
Now that we have sliced our sprite sheet and our character sprite assets are ready,
we now need to add our character to the game by creating a sprite GameObject.

Add Some Character

[64]

To do so, we simply drag the selected sprite asset (in this case, we will use
the body as our main GameObject) from the Project Browser as shown in the
following screenshot:

Then, we drop it into the Hierarchy tab as shown in the following screenshot:

Chapter 3

[65]

To make it clearer, we rename the body GameObject to a character as it will act as
the character GameObject consisting of all the character's body parts.

To rename it, we select the body listed within the Hierarchy and right-click on it.
A drop-down box will appear with the option to rename the GameObject as shown
in the following screenshot:

Currently the Scene View should look like the following screenshot:

Add Some Character

[66]

Now that the GameObject appears as a character, we select the remaining body
parts that will make up our character from the Project Browser, drag them to the
Hierarchy tab, and drop them over the character so that the character becomes the
parent and all the other parts are the children.

This is to ensure that the body parts are locked to the character and inherit any
changes that are applied to the character; for instance, when we move the character,
all the parts move relative to the character. Otherwise, any position change with the
character would have resulted with the need to change all the positions of each and
every body part.

The Hierarchy tab should now look as follows:

Sprite Renderer
When we select the character parent or any of its children, the Sprite Renderer
component will display this selection within the Inspector toolbar. It contains all the
settings that affect how the image will be rendered (in other words, how the image's
appearance is displayed). The following screenshot shows us the Sprite Renderer
component in Unity:

Chapter 3

[67]

The Sprite field contains the reference to the sprite asset that the GameObject is
using. Should we want to replace the image that the GameObject is using, we
simply need to click on the circle (highlighted) as in the following screenshot:

This will open the sprite asset folder allowing us to pick any asset that we have
added to our project. This is shown in the following screenshot:

Add Some Character

[68]

The Color field is a blend mode that multiplies the color selected with the sprite's
original color. As we would like to keep the sprite's original color, we leave this
setting at the default white. If we wanted to change the color, we simply click on
the color box or color picker next to it.

The Material field allows us to select the material we would like to use, which affects
the image's rendering properties as well as the assets used. We can leave this as the
default material. If we want to change it, we can simply click on the circle beside the
setting, which will open the material asset folder.

The Sorting Layer option is where we group a selection of sprites that we want to
display on the same layer. We will leave this at its default settings.

The Order in Layer option specifies which order we want the selected layer to
appear. As we want the body of the character to appear in front of the bazooka, we
leave the bazooka's Order in Layer option to 0 and set the character's Order in Layer
option to 1. Depending on the order, we drag the parts we may need to adjust the
Order in Layer option of a few of the other parts.

We will now need to move the body parts of the character within the Scene View
so that they appear in the correct positions. The result should appear as shown in
the following screenshot:

Chapter 3

[69]

Animating a sprite
Now that we have added our character to the scene, we want to bring it to life by
animating the sprite.

To do so, we select our character in the Scene View or from the Hierarchy tab and
open the Animation Editor window by going to the main toolbar and navigating
to Window | Animation as shown in the following screenshot:

Add Some Character

[70]

Animation Editor
Within the Animation Editor, we can set up our dopesheet 2D animations using
frames on the timeline and curves that we will add. The following screenshot
represents the Animation Editor with the interface clearly labeled as we will
refer to each of the tools when creating our animation:

Dopesheet 2D animation
Dopesheet is the user-interface approach used in the editor to create animation clips.
The word Dopesheet is derived from its traditional use in cartoons and film/TV.
Similar to a storyboard, it is used in planning animations using frames and sections.

To create a reusable animation clip for our character of it breathing, follow
these steps:

1. We select the character, click on the Create New Clip drop-down box,
and then click on Create New Clip.

2. We then select Idle as the name of our animation and click on Save.
3. Now we select Add Curve.
4. A drop-down box will appear giving us several options.

Chapter 3

[71]

5. We click on Transform to open all the transform properties and then
select Position by clicking on the plus button next to it as shown in the
following screenshot:

6. We will animate our character breathing by moving its body's position up
and down slightly.

7. We need to reduce the frames per second (FPS) from 60 down to 10 so that
the animation is slower and smoother as this property controls how many
frames are played per second.

8. The record button should already be pressed down when the button is red
because adding a new curve automatically enables recording. If we have
accidentally disabled it, we press the record button and move our character
up slightly in the Scene View or the Inspector to change its position for the
first frame. This will add a key to the frame resulting in a key frame. When
moving our character within the Scene View, we can hold the Shift key while
dragging to ensure that we move it in a straight path and the Ctrl key snaps
the sprite along a grid defined in Edit | Snap Settings.

9. We then type 5 within the current key frame to add a new key frame, and
move the character down again.

10. Finally we add 10 to the current key frame and move the character up once
again to add the final key frame.

11. We then click on the record button to stop recording and press play to view
our animation. We must not forget to stop recording! Otherwise, we will
inadvertently record things in our animation that we did not mean to.

12. To delete any key frames, click on the key frames to select them, and then
press Delete.

13. Now when we play our game from the Game View, we will see our character
animating—our character is alive!

Add Some Character

[72]

Animator
The Animator allows us to switch between multiple animations (or states) when
certain game conditions occur. For example, when a character is in a jumping state,
Unity will automatically enable the jump animation. We define which character
states correspond to the animations in the Animator View.

1. To open the Animator, we go to the main toolbar and navigate to
Window | Animator. The Animator Window will open and look
as follows:

2. Now, we add our character's idle animation to the Animator by simply
dragging the idle animation from the Project Browser and dropping it
into the Animator View.

3. We then right-click on the Any State option within the Animator, select
Make Transition, and then click on the idle animation state. We now
have the any state transitioning into the idle animation.

4. We use Any State when we want to jump to a state (an animation to play)
no matter what state our character is in.

5. We then right-click on the idle state and select Set As Default to set the
idle state to run when we first run the game. By default, this should already
be the case, and therefore, Set As Default will be grayed out but is worth
noting in case we accidentally set a different animation state as default.

Chapter 3

[73]

The Animator View should now look as follows:

Run the scene/game by pressing play in the Game View to see our character
come alive!

Summary
In this chapter, we learned to create and add characters to our games using sprites
by creating, importing, slicing, and animating sprites.

In the next chapter, we will learn how to not only bring our character to life, but all
the elements in the game through coding. We will go through the foundations of
coding so that we can make use of the basic building blocks to bring our ideas to life.

Code Control
"The most important property of a program is whether it accomplishes the

intention of its user."

– C.A.R. Hoare

"The computer programmer is a creator of universes for which he alone is the

lawgiver. No playwright, no stage director, no emperor, however powerful,

has ever exercised such absolute authority to arrange a stage or field of battle
and to command such unswervingly dutiful actors or troops."

– Joseph Weizenbaum

Overview
In this chapter, we will learn the core concepts of programming by creating basic
code in the UnityScript that will take us from printing output and controlling a
character to destroying an enemy.

Here's a list of topics that will be covered in this chapter:

• Why do we need code?
• Code fundamentals
• Hello world
• Controlling the character
• Destroying the enemy
• Coroutines
• Namespaces
• Unity Scripting Reference

Code Control

[76]

Why do we need code?
In order to create any type of game, we need to understand code because the pieces
of code are the instructions that tell the game engine (Unity) when and how you
want something to occur at any given point.

Programming languages
In order to create code, we use a programming language, which is an intermediary
language that represents the instructions that we tell the computer processor.

Levels of programming languages
There are three levels of programming languages:

• Machine language
• Assembly language
• High-level languages

Machine language
Computers do not understand human language; therefore, we need to communicate
with the computer processor via machine language.

Machine language, also known as binary code, consists of a combination of 0s and
1s that represent high and low electrical voltages. These 0s and 1s are known as
bits (binary digits). We can then make use of data by representing the data using
these bits.

All data has an area on the computer or device where it is stored (known as the
memory address) as well as the actual data stored (known as memory content).
The computer or device then uses the memory address to find where the data is
stored so that it can access the memory content.

Binary code can also be represented in hexadecimal format, whereby each
hexadecimal digit represents four binary digits. The hexadecimal format is
shorthand and a more human-friendly representation of binary code.

All programs and thus games must be converted into machine language before
they can be executed.

Chapter 4

[77]

The following table is a visual representation of machine language, showing both
the binary and hexadecimal representations:

Machine Language
Memory Address Memory Content
Binary HEX Binary HEX
0000000000000000 0000 11011011 DB
0000000000000001 0001 00000100 04
0000000000000010 0002 11000110 C6

Assembly language
Assembly is a low-level language that uses symbolic operation code that assigns
human-readable names to each instruction from machine language to represent
machine language. It is extremely fast to run; however, it's much more difficult to
learn, and it takes significantly longer to write with many more lines of code than
high-level languages.

The following code is a representation of assembly language:

;Example of Assembly language
;Accepts a number in the register AX;
;Subtracts 50 if it is in the range 100-150;
;Else it remains as it is.

SUB50 PROC
 CMP AX,100
 JL DONE
 CMP AX,150
 JG DONE
 SUB AX,50
DONE: RET
SUB50 ENDP

High-level languages
High-level languages are programming languages that use statements that are
closer to the English language and are therefore easier to learn.

Code Control

[78]

The following code is a representation of Java—a high-level language:

/*Example of subtraction in Java
*The resulting values are then displayed
*/
public class Subtraction
{

 public static void main(String[] args)
 {
 int number1 = 100;
 int number2 = 50;

 //calculating number1 - number2;
 int difference = number1 - number2;

 //Displaying the values
 System.out.println("number1 : "+number1);
 System.out.println("number2 : "+number2);
 System.out.println("difference : "+difference);

 }
}

Scripting languages
Scripting languages are an alternative to programming languages, whereby we
create lightweight, much more human-readable scripts that are interpreted by
another program at runtime rather than compiled by the computer's processor
directly as compiled languages are. Thus, scripting languages are normally slower
than compiled languages.

Modern languages, such as UnityScript, make use of both. UnityScript, although
a scripting language providing flexibility, gets compiled, making it much faster.

Chapter 4

[79]

The following diagram shows the layers/levels of programming languages:

Binary code

Read by hardware

Compiling

Machine code

Assembly language

High-level language

Scripting language

Hexadecimal representation of binary code read by OS

First Human-readable layer

Closer to the English language (C, C++)

Interpreted language (JavaScript)

UnityScript versus C# versus Boo
When programming code for our game in Unity, there are three languages that
we can choose from: UnityScript, C#, and Boo.

All of them are relatively equal, and the choice in language depends on which
one you are more familiar with, for example:

• If you come from a background programming in C++ and Java, then you
will find C# more familiar

• If you have experience in PHP, BASIC, or JavaScript, then you will prefer
UnityScript. UnityScript is Unity's version of the widely used scripting
language JavaScript with several differences.

• If you are completely new to programming, then UnityScript is the easiest
to pick up and learn quickly. You do not need to worry about types and
casting as UnityScript handles it automatically for you.

Code Control

[80]

The following script represents code written in UnityScript:

// Message with a link to an object.
Debug.Log ("Hello", gameObject);

// Message using rich text.
Debug.Log("<color=red>Fatal error:</color>
 AssetBundle not found");

Beginners may find C# more daunting, but it is more powerful, better suited
for games requiring networking features, and better for performance.

The following script represents the preceding code written in C#:

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour {
 void Example() {
 Debug.Log("Hello", gameObject);
 Debug.Log("<color=red>Fatal error:</color> AssetBundle not
found");
 }
}

Boo is not widely used. However, if you are familiar with the Python language
syntax, then you may prefer to use Boo.

The following script represents the same preceding code written in Boo:

import UnityEngine
import System.Collections

public class ExampleClass(MonoBehaviour):

 def Example() as void:
 Debug.Log('Hello', gameObject)
 Debug.Log('<color=red>Fatal error:</color> AssetBundle not
 found')

As this book is aimed at beginners, we will make use of UnityScript in all our
code throughout the book.

Chapter 4

[81]

Code fundamentals
In order to create our own code, we need to understand the foundations of
programming so that we can build upon it.

Code is made up of the following main components:

• Variables
• Data types
• Operators (also known as expressions)
• Functions (also known as methods)
• Comments
• Library import variables

When programming, we make use of variables to store both known and unknown
information in the form of values and identifiers in named locations in memory.

For instance, we could store the name of the main character in our game in a
variable, as shown in the following line of code:

Name = Hercules

Name is the variable's identifier, and Hercules is the stored value assigned to the
variable Name.

Data types
Variables are used in programming to store different types of data. Setting the variable
type is known as Typing. The reason to use types and type checking is that expressions
involving incompatible types can be detected right away rather than becoming hidden
bugs (errors in code). For instance, if we are attempting to perform calculations and
we accidentally assign a string (text) value to a variable of type int (integer number),
then an error will appear as soon as we try to build our script, whereas if we did not
use types and type checking, then the script would have attempted to do a calculation
with the text, which would produce nonsensical output.

Code Control

[82]

There are many data types in Unity. The most commonly used variable types in
UnityScript are:

Data type Variable data
String Text within double quotes such as "Press start

to play."
Integer (written as int) A whole number such as 3.
Float A number with a decimal point such as

3.14159.
Boolean True or False.
GameObject An object in a Unity scene. It contains all

the data that makes up an object, such as its
name, position, and so on.

To declare and initialize a variable, we use the following syntax:

var varName:DataType //assignment operator value

The following is an example of the preceding syntax:

var playerAmmo:Int = 3;

Declaring a variable simply means that we are announcing the existence of an
element, be it an object, piece of text, number, and so on, by typing out what it is,
which, in this case, is a variable with its name, type, and value.

Initializing means that we are assigning a value to the variable from the start—its
initial value.

The preceding code creates a variable of type integer that stores the amount of player
ammunition and in this case has an initial amount of 3.

Operators
Operators are symbols which operate on variables. There are several kinds of
operators. The most commonly used operators are assignment, arithmetic, relational,
and logical operators.

Chapter 4

[83]

Assignment operator Meaning Example
= Stores a value into a variable A = 72

Arithmetic operators Meaning Example
+ Addition A = 5 + 4 (A=9)
- Subtraction A = 10-5 (A=5)
* Multiplication A = 5*2 (A=10)
/ Division A = 10/2 (A=5)
% Remainder after division A = 10%3 (A=1)

Relational operators Meaning Example
> Greater than 7>3 True
< Smaller than 7<3 False
>= Greater than or equal to 7>=3 True
<= Smaller than or equal to 3<=3 True
== Equal to 7==3 False
!= Not equal to 3!=7 True

Logical operators Meaning Example
|| Logical OR a=1 and b=2

If ((a==1)||(b<1))
returns true

&& Logical AND a=1 and b=2
If ((a==1)&&(b<1))
returns false

! Logical NOT a=1
If !(a==1) returns false

Functions
Functions accomplish a specific task combining multiple instructions into a single
line of code. They are called by their name and can be reused as many times as
required. Functions are triggered by certain events that we specify.

Code Control

[84]

UnityScript comes with many built-in functions that help make coding many
common tasks quicker. UnityScript files come with two required functions by
default: Start() and Update(). The Start function has the following syntax:

Function Start()
{
}

The Start function gets called only once when the script is first enabled on the
very first frame. Games and computer programs in general run at a certain number
of frames per second. Thus, the Start function gets called on the very first frame
during runtime.

This function is useful when we want to initialize—set values to variables at the
very start of the game, for example, how many lives the player will start with.

Curly braces/brackets are used to mark when a function begins and when it ends.
Every function has to have a start and an end; otherwise, if one is missing, then the
code will not work, and it will throw an error on the console when we try to build
our code.

The following is the syntax for the Update function:

function Update()
{
}

Unlike the Start function, the Update function gets called every frame (thus, it will
be called several times within a second) and is useful to call functions that we would
like to continuously occur, for example, an enemy moving.

To declare a function, we do the following:

function FunctionName()
{
}

To call a function, we do the following:

FunctionName();

To pass a variable to a function to be used with a function, we do the following:

function FunctionName(variableName:Int)
{
}

FunctionName(variableName);

Chapter 4

[85]

To pass multiple variables to a function to be used with a function, we do the
following:

function FunctionName(var1:Int, var2:String)
{
}

FunctionName(var1, var2);

To return a variable from a function, we do the following:

function FunctionName():Int
{
return variableName;
}

variableName = FunctionName();

In UnityScript, variables declared outside a function become member (function)
instance variables of the script with a per-instance state, which typically means
a per-game-object state; for example:

var playerAmmo:Int = 10;
function LevelAmmo ()
{
}

If we want all functions in our code to be able to access a variable, then we declare
a global variable. To do this, we simply use the static keyword when declaring
the variable as shown in the following line of code:

static var playerAmmo:Int;

And then, to access it in the same script, we simply call it:

playerAmmo = 1;

If we want to use it in another script, we include the name of the script as shown
in the following line of code:

Scriptname.playerAmmo = 10;

However, if we want a variable to only be available to a certain function, then we
declare it as a local variable. To do this, we simply declare it within the function
like the following code snippet:

function LevelAmmo ()
{
var playerAmmo:Int = 10;
}

Code Control

[86]

Now, if we scripted another function calling the preceding playerAmmo variable,
then an error would result since the variable is not within scope, and therefore,
the function does not know about it. For example:

function CountAmmo()
{
ammoCount = playerAmmo + 1; //error would occur
}

When naming functions or variables, we can use alphanumeric characters of upper
or lowercase. However, they cannot start with a number. We must remember to use
the same case when calling a declared function or variable, else it will not match and
we will get an error. This is due to the fact that the same word with a different case is
seen as a new and different (unique) variable or function.

We can also use underscores to separate words in a function or variable name, such
as player_Health. We should not use existing syntax as our function or variable
name as it will produce an error, for example, naming a function or variable
function as shown in the following code:

function function()
{
}

Conditional statements
When programming, we use a conditional statement to check variables so that we
can control the flow of the game and decide on what code to execute at certain points.

If...else
We use the if...else conditional statement as follows:

if (condition)
{
 //do a certain action
}
else
{
 //otherwise do a different action
}

Chapter 4

[87]

We don't have to always use else. For instance, have a look at the following statement:

if (playerHealth = = 0)
{
 gameOver = true;
}

As the game will continue when playerHealth is not equal to zero, we need not add
the else statement.

Using comments
We add comments to our code to make it clearer and much easier to understand
when we return to it, to remind ourselves. Comments are also used when working
with other people in a team as they will need to understand our code and we, theirs.

To add a comment to our code, we add double forward slashes before our comment
as shown in the following syntax:

//This is a comment

Classes
A class is a template to create objects by specifying a set of variables and functions.
The objects are instances of a class.

Think of a class as a template, blueprint, or factory (not to be confused with the
advanced object-oriented design pattern used in programming) that creates objects.

You could have a class bicycle, and the objects based on that class would be the
different types of bicycles, such as a racing bike, dirt bike, and hybrid bike.

The following is an example of a class in UnityScript:

class Bicycle {

// fields are public by default
var type : String;

function Bicycle(x : int) {
 this.type = ["racing bike", "dirt bike", "hybrid bike"][x];
 }
 function announce() {
 print("I am a "+this.type+".");
 }
}

Code Control

[88]

var object = new Bicycle(1);

// prints "I am a dirt bike." because code lists usually start
 at 0.
object.announce();

In fact, the functions that we went through earlier in the chapter, if simply placed
in a UnityScript file, are part of an implicit class that Unity creates for us. The class
name is taken automatically from the name of the UnityScript file.

Private versus public
Variables and functions within classes have two levels of scope and accessibility:

• Private
• Public

Private functions and variables can only be accessed by other functions within the
same class. Public functions and variables can be accessed by functions within the
same class as well as other classes.

To declare a variable or function, either private or public, we use the following syntax:

Public var varName:DataType = value;
Private var varName:DataType = value;

Public function FunctionName()
{
}

Private function FunctionName()
{
}

Importing external libraries
When we want to make use of external libraries (for instance, third-party tools,
classes, Software Development Kits (SDKs), and Application Programming
Interfaces (APIs)), we first need to import them by adding the word import
followed by the name of the external library that we would like to import,
as shown in the following code statement:

import LibraryName;

Chapter 4

[89]

Code editor
To create code, we can simply use a text editor, such as Notepad. However, its
simplicity and lack of features makes it much harder and slower to code as well as
more error prone. For example, it does not highlight the different entities nor does
it provide line numbers.

An integrated development environment (also known as an IDE) is an application
that facilitates coding and usually comprises a code editor together with debugging
and automation tools.

There are many IDEs available with varying features. Fortunately, Unity comes
with the MonoDevelop IDE. MonoDevelop is a feature-rich, cross-platform IDE
that makes it easier to port code from one language into another. Thus, we will
be using MonoDevelop throughout the book when creating our code.

To open MonoDevelop, we will need to do the following within Unity:

1. Create a new folder by going to the Project Browser and clicking on Assets
and right-clicking on Assets.

2. Then, go to Create | Folder.
3. Name the folder Code.
4. Now click on the folder to select it. It should be highlighted and empty.
5. Right-click on the empty folder and go to Create | Javascript.
6. Name the new file HelloWorld.
7. Double-click on the HelloWorld file. This should open the MonoDevelop

IDE and should look similar to the following screenshot:

Code Control

[90]

The first line, #pragma strict, means that we are enforcing typing where we need
to explicitly state what type a variable is. We can remove it if we do not want to
have to state each variable type; however, that would be risky as it will be more
easily prone to error.

Hello world
When creating our first code, the tradition is to create "hello world" as our very
first code. To do this, we need to do the following:

1. In MonoDevelop, within the file we have just created and named
HelloWorld, we create a variable under #pragma strict.

2. To create a variable, we declare it by typing var.
3. Follow this by typing greeting—the name of the variable.
4. Then, we use a colon : to declare the type that the variable will be using,

followed by typing out the string type String as we want to store text in
our variable. We need to ensure that we use String with an uppercase S;
otherwise, we will get an error.

5. We then use the assignment operator = followed by the text "Hello World!"
with quotes to assign the variable with text and thus initialize it.

6. We always finish a line with a semicolon ;.
7. We then use the UnityScript function print by typing out "print" to print

out our text, and we pass it the variable we just created so that it will print
the information stored within the variable: print(greeting);. We place
this line of code within the Start() function as we want to call it on the
very first frame.

8. Our code should look like the following (the code that is highlighted is
the code we have just added to the existing script):
#pragma strict

var greeting:String = "Hello World!";

function Start ()
{
 print(greeting);
}

function Update ()
{
}

Chapter 4

[91]

9. We now go to Build | Build All and should not get any errors. The
following screenshot displays the location:

Running a build in MonoDevelop for Unity is not for the same reason
as in other IDEs. Unity (the editor) does the real build automatically
once any source changes are detected and the user has focused
(pressed Alt + Tab) back to the Unity Editor. The Build command in
MonoDevelop produces output that Unity Editor ignores. Building in
MonoDevelop is only useful to help catch build errors without having
to switch back to Unity Editor.

10. Back in Unity, we create a new empty GameObject by going to
GameObject | Create Empty.

11. Now, we assign the script that we just created to the GameObject so that it
can be used in our project. To do this, we click on our GameObject to select
it and then drag our new script called HelloWorld into the Inspector.

12. We open the Console View by going to Window | Console.
13. We can now push play and should see the text Hello World! displayed in

the Console View.
We should now see the following screenshot:

Code Control

[92]

Downloading the example code and colored images
You can download the example code and colored images for all Packt
books you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Controlling the character
We are now going to create a script that will enable us to control our character.

We do not build our scripts until we have added all of them as some of
them may need to communicate with each other and we will get errors
when they do not exist yet and are therefore unknown. Also, we do
not actually need to build the scripts as Unity automatically does this.
However, it is good practice as it helps to check for errors.

We will control a spaceship, moving it left and right. The following are the steps
to do this:

1. Download the free public domain spaceship art from the following URL:
http://freeartsprites.com/free-art/Space-Pack/

2. We will use the Rocket.png asset as our character sprite.
3. Create a new sprite GameObject, name it Ship, and assign the Rocket.png

file shown in the following image as the sprite:

4. Create a folder by right-clicking in the Project Browser and going to
Create | Folder. Name the folder Code.

http://freeartsprites.com/free-art/Space-Pack/

Chapter 4

[93]

5. Create a new script in our Code folder and go to Create | Javascript.
6. Name it ControlCharacter.
7. Add the following code snippet (excluding the text in the information boxes):

Ensure strict typing—if you use the same variable for
different data types, then an error will be thrown when
building the script, otherwise these bugs could go unknown.

#pragma strict

The speed that the ship will move is declared next.

var speed:float = 3.0;

function Start ()
{

}

Move the character each frame.

function Update ()
{
 MoveCharacter();
}

We will now look at the function to move characters.

function MoveCharacter()
{

If we press A, then the ship moves to the left-hand side.

Code Control

[94]

if (Input.GetKey(KeyCode.A))
{
 transform.Translate(Vector3.left * speed *
Time.deltaTime);
}

If we press D, then the ship moves to the right-hand side.

if (Input.GetKey(KeyCode.D))
{
 transform.Translate(Vector3.right * speed * Time.deltaTime);
}
}

We then build our script in Unity; we select the character that we created and drag
our new script onto its Inspector.

Now when we press play, we can move the spaceship left and right by pressing
the A and D keys respectively.

Destroying the enemy
We are now going to destroy an enemy by spawning laser beams when we fire our
spaceship. We will then use collision detection to detect when the laser beams hit
the enemy ship. As soon as the enemy ship is hit, it will be destroyed.

We start a new project and add the spaceship image Rocket.png that we used
previously; we will now add laser beams by using the following image:

Let's destroy the enemy by executing the following steps:

1. Create a new GameObject and assign the laserbeam sprite to it.
2. Name this GameObject Bullet.
3. Place it behind the spaceship.

Chapter 4

[95]

4. Select it, and within the Inspector, tag it by going to Tag | Untagged and
then going to Tag | Add Tag….

5. Name the tag Bullet within the Element 0 field.
6. We must make sure that we then select the Bullet tag we just created from

the Tag drop-down box.
7. Now, go to Add Component | Physics 2D | Box Collider 2D.
8. Go to Add Component | Physics 2D | Rigidbody 2D.
9. Make sure the Is Kinematic option is unchecked (and therefore false) and is

thus set to dynamic.

The following screenshot displays a table that explains which colliders work with
each other:

Collision Detection Table, viewed February 20, 2014, http://docs.unity3d.com/
Documentation/Components/class-BoxCollider.html

Attach the following script to Ship by either dragging the script onto the Ship
GameObject or by selecting the Ship GameObject from the scene and then,
within the Inspector, going to Add Component | New Script.

Name the script Spawn.js. We declare our bullet variable of type
Rigidbody2D in the next line of code.

var bullet:Rigidbody2D;

The speed that the bullet will fire at is defined in the next code
snippet.

var speed:float = 20f;

function Update ()
{
 var bulletInstance:Rigidbody2D;

http://docs.unity3d.com/Documentation/Components/class-BoxCollider.html
http://docs.unity3d.com/Documentation/Components/class-BoxCollider.html

Code Control

[96]

If the fire (Ctrl or mouse click) button is pressed and there are no
collisions…

 if(Input.GetButtonDown("Fire1")&& Hit.hit == false)
 {

Let's instantiate the bullet facing right and set its velocity to the
right. Name all the instances Bullet.

bulletInstance = Instantiate(bullet, transform.position,
 Quaternion.Euler(new Vector3(0,0,0)));
bulletInstance.velocity = new Vector2(speed, 0);
bulletInstance.name = "Bullet";
 }
}

Assign the bullet as the Rigidbody2D variable within the Spaceship's Inspector by
clicking on the circular button shown in the following screenshot:

Chapter 4

[97]

Now we add the enemy spaceship. Go to Add Component | Physics 2D | Box
Collider 2D.

Add the following image:

We attach the following new script to the enemy ship:

Name the script Hit.js.
Now, let's make a list of GameObjects.

var gameObjects : GameObject[];

A Boolean variable to track when a collision has occurred is
defined next.

static var hit:boolean = false;

Next, we use a function to remove all objects after a collision.

Code Control

[98]

function Removal()
{
//Find all bullet objects
 gameObjects = GameObject.FindGameObjectsWithTag("Bullet");

Next, we use a loop to go through and destroy all bullet objects
in the scene.

 for(var i = 0 ; i < gameObjects.length ; i ++)
 Destroy(gameObjects[i]);
}

A special Unity function to detect 2D collisions is used now.

function OnCollisionEnter2D(other:Collision2D){

Check whether the bullet or bullet clones collide with the enemy.

if(other.gameObject.name=="Bullet")
{

Destroy the enemy ship.

 Removal();
 Destroy(gameObject);
 hit = true;
 }
}

We now build the script that we created and then press play in Unity to test out
our script. We either press the Ctrl (fire) key or the right mouse button to shoot
and destroy the enemy ship.

Chapter 4

[99]

Coroutines
When we call a function, it runs to completion within a single frame. Therefore,
we will create a function that makes an enemy ghost gradually disappear by
doing the following:

function Fading()
{
 for (var f = 1.0; f >= 0; f -= 0.1)
 {
 var colour = renderer.material.color;
 colour.alpha = f;
 renderer.material.color = colour;
 }
}

The preceding code would not give us the result that we were after as is,
because it will be completed within one frame. Thus, we will see the ghost
enemy disappear instantly.

In order to see the ghost gradually disappear, we would need to see it fade over
several frames. To achieve this, we let yield do the following:

function Fading()
{
 for (var f = 1.0; f >= 0; f -= 0.1)
 {
 var colour = renderer.material.color;
 colour.alpha = f;
 renderer.material.color = colour;
 yield;
 }
}

function Update()
{
 if (Input.GetKeyDown("a"))
 {
 Fading();
 }
}

Code Control

[100]

Namespaces
As a game project becomes much larger, it is more likely that you will use the same
name for script classes that have similar functions. This results in clashes between
the script class names, and therefore, errors when compiling.

This is especially the case when a team of people are working together on a game
project as more than one person could think of a certain class name as appropriate.
For example, one scripter could be working on the player health, while another
scripter is working on the enemy health, and both then decide to call their
class Health.

To avoid this occurrence, C# offers a feature called namespace that makes use of
the namespace as in the following script:

namespace Enemy {
 public class Health1 : MonoBehaviour {
 ...
 }

 public class Health2 : MonoBehaviour {
 ...
 }
}

Now, when we call our classes, we will use Enemy.Health1 and Enemy.Health2.
However, we can avoid having to type namespace before each class by adding the
using directive at the very top line of our script as in the following:

using Enemy;

Now, we can simply call the classes Health1 and Health2 throughout our script.

Unity Scripting Reference
The Unity Scripting Reference is the official central hub of documentation and
information for the scripting API that Unity provides. The scripting API is
basically a library with specifications (explanations) for the classes and functions
of those classes.

Chapter 4

[101]

The following screenshot shows the Unity Scripting Reference page on the official
Unity website:

To access the Unity Scripting Reference, we visit the following URL:

https://docs.unity3d.com/Documentation/ScriptReference/index.html

UnityScript is also simply called JavaScript by the Unity community and Unity
documentation. Within the Unity Scripting Reference, we can search for any terms
that we would like to use in our game using the search box, and we can even select
the language we would like, as shown in the following screenshot:

https://docs.unity3d.com/Documentation/ScriptReference/index.html

Code Control

[102]

The Unity Scripting Reference is very useful and helpful as it also provides snippets
of script, as shown in the following screenshot:

Summary
In this chapter, we learned about the core concepts of programming. We created
basic code in UnityScript that printed output, controlled a character, and destroyed
an enemy.

In the next chapter, we will learn all about the various input types and states. We
will then go on to learn how to create buttons and the game controls by using code
snippets for input detection.

What's Your Input?
"Computers are finite machines; when given the same input, they always produce
the same output."

– Greg M. Perry, Sams Teach Yourself Beginning Programming in 24 Hours

Overview
In this chapter, we will learn all about the various input types and states. We will
then go on to learn how to create buttons and the game controls by using code
snippets for input detection.

The list of topics that will be covered in the chapter is as follows:

• Input versus output
• Input types
• Output types
• Input Manager
• Input detection
• Buttons
• Game controls

Input versus output
We will be looking at exactly what both input and output in games entail.
We will look at their functions, importance, and differentiations.

What's Your Input?

[104]

Input in games
Input may not seem a very important part of a game at first glance, but in fact it is
very important, as input in games involves how the player will interact with the
game. All the controls in our game, such as moving, special abilities, and so forth,
depend on what controls and game mechanics we would like in our game and the
way we would like them to function.

Most games have the standard control setup of moving your character. This is to
help usability, because if players are already familiar with the controls, then the
game is more accessible to a much wider audience. This is particularly noticeable
with games of the same genre and platform.

For instance, endless runner games usually make use of the tilt mechanic which is
made possible by the features of the mobile device. However, there are variations
and additions to the pre-existing control mechanics; for example, many other endless
runners make use of the simple swipe mechanic, and there are those that make use
of both.

When designing our games, we can be creative and unique with our controls,
thereby innovating a game, but the controls still need to be intuitive for our target
players. When first designing our game, we need to know who our target audience
of players includes. If we would like our game to be played by young children,
for instance, then we need to ensure that they are able to understand, learn, and
remember the controls. Otherwise, instead of enjoying the game, they will get
frustrated and stop playing it entirely.

As an example, a young player may hold a touchscreen device with their fingers
over the screen, thereby preventing the input from working correctly depending on
whether the game was first designed to take this into account and support this.

Different audiences of players interact with a game differently. Likewise, if a player
is more familiar with the controls on a specific device, then they may struggle with
different controls. It is important to create prototypes to test the input controls of a
game thoroughly. Developing a well-designed input system that supports usability
and accessibility will make our game more immersive.

Chapter 5

[105]

Output in games
Output is the direct opposite of input; it provides the necessary information to the
player. However, output is just as essential to a game as input. It provides feedback
to the player, letting them know how they are doing. Output lets the player know
whether they have done an action correctly or they have done something wrong, how
they have performed, and their progression in the form of goals/missions/objectives.

Without feedback, a player would feel lost. The player would potentially see the
game as being unclear, buggy, or even broken. For certain types of games, output
forms the heart of the game.

The input in a game gets processed by the game to provide some form of output,
which then provides feedback to the player, helping them learn from their actions.
This is the cycle of the game's input-output system.

The following diagram represents the cycle of input and output:

What's Your Input?

[106]

Input types
There are many different input types that we can utilize in our games. These various
input types can form part of the exciting features that our games have to offer. The
following image displays the different input types:

The most widely used input types in games include the following:

• Keyboard: Key presses from a keyboard are supported by Unity and can be
used as input controls in PC games as well as games on any other device that
supports a keyboard.

• Mouse: Mouse clicks, motion (of the mouse), and coordinates are all inputs
that are supported by Unity.

• Game controller: This is an input device that generally includes buttons
(including shoulder and trigger buttons), a directional pad, and analog sticks.
The game controller input is supported by Unity.

Chapter 5

[107]

• Joystick: A joystick has a stick that pivots on a base that provides movement
input in the form of direction and angle. It also has a trigger, throttle, and
extra buttons. It is commonly used in flight simulation games to simulate
the control device in an aircraft's cockpit and other simulation games that
simulate controlling machines, such as trucks and cranes. Modern game
controllers make use of a variation of joysticks known as analog sticks and
are therefore treated as the same class of input device as joysticks by Unity.
Joystick input is supported by Unity.

• Microphone: This provides audio input commands for a game. Unity
supports basic microphone input. For greater fidelity, a third-party audio
recognition tool would be required.

• Camera: This provides visual input for a game using image recognition.
Unity has webcam support to access RGB data, and for more advanced
features, third-party tools would be required.

• Touchscreen: This provides multiple touch inputs from the player's finger
presses on the device's screen. This is supported by Unity.

• Accelerometer: This provides the proper acceleration force at which the
device is moved and is supported by Unity.

• Gyroscope: This provides the orientation of the device as input and is
supported by Unity.

• GPS: This provides the geographical location of the device as input and is
supported by Unity.

• Stylus: Stylus input is similar to touchscreen input in that you use a stylus
to interact with the screen; however, it provides greater precision. The latest
version of Unity supports the Android stylus.

• Motion controller: This provides the player's motions as input. Unity
does not support this, and therefore, third-party tools would be required.

Output types
The main output types in games are as follows:

• Visual output
• Audio output
• Controller vibration

Unity supports all three.

What's Your Input?

[108]

Visual output
The Head-Up Display (HUD) is the gaming term for the game's Graphical
User Interface (GUI) that provides all the essential information as visual output
to the player as well as feedback and progress to the player as shown in the
following image:

HUD, viewed June 22, 2014, http://opengameart.org/content/golden-ui

Other visual output includes images, animations, particle effects, and transitions.

Audio
Audio is what can be heard through an audio output, such as a speaker, to provide
feedback that supports and emphasizes the visual output and, therefore, increases
immersion. The following image displays a speaker:

http://opengameart.org/content/golden-ui

Chapter 5

[109]

Speaker, viewed June 22, 2014, http://pixabay.com/en/loudspeaker-speakers-sound-
music-146583/

Controller vibration
Controller vibration provides feedback for instances where the player collides
with an object or environmental feedback for earthquakes to provide even more
immersion as in the following image:

http://pixabay.com/en/loudspeaker-speakers-sound-music-146583/
http://pixabay.com/en/loudspeaker-speakers-sound-music-146583/

What's Your Input?

[110]

Having a game that is designed to provide output meaningfully not only makes
it clearer and more enjoyable, but can truly bring the world to life, making it truly
engaging for the player.

Unity Input Manager
The Input Manager allows us to set up (map) our standard game control
configuration for our game, and it has two advantages that are as follows:

• The Input Manager allows us to simply and easily use the default set keys
in our scripts

• The Input Manager allows the players of our games to set the controls to
their own configurations.

To configure it, we go to Edit | Project Settings | Input.

The following screenshot shows the Input Manager and all the input controls that
can be configured:

Input Manager, viewed February 25, 2014, https://docs.unity3d.com/Documentation/
Images/manual/class-InputManager-0.jpg

https://docs.unity3d.com/Documentation/Images/manual/class-InputManager-0.jpg
https://docs.unity3d.com/Documentation/Images/manual/class-InputManager-0.jpg

Chapter 5

[111]

The following screenshot shows how the Input Manager will be displayed to players
of our game from the game launcher:

Input Manager, viewed February 25, 2014, https://docs.unity3d.com/Documentation/
Images/manual/class-InputManager-1.jpg

Detecting input
To detect input from the various devices, namely, computers and mobiles
(iOS and Android), we will make use of the Unity class named Input with
its functions and variables.

For movement-based input, we make use of the Input.GetAxis() function to ensure
that movement is smoother and to reduce the size and complexity of the script.

For all other action event buttons, we make use of the Input.GetButton() function.
We always call these functions from within the Update() function since they only
get reset when the frame updates.

https://docs.unity3d.com/Documentation/Images/manual/class-InputManager-1.jpg
https://docs.unity3d.com/Documentation/Images/manual/class-InputManager-1.jpg

What's Your Input?

[112]

For iOS and Android mobile devices, we can track multiple touch inputs using
the Input.touches property. We can also track input via the accelerometer and
gyroscope using the properties Input.acceleration and Input.gyro respectively.

Buttons
Usually, the very first input that is required from a player in most games is from
buttons on the main menu of a game. Thus, we are now going to create our own
buttons using the OnGui function provided by Unity.

OnGui
The OnGUI function is used for handling GUI events, the creation and the look and
functionality of the game's GUI. It is an event function that is part of the well-defined
set of callbacks that Unity provides, so it gets called automatically like Start()
and Update(). We, therefore, do not call it within another function.

OnGUI can be called several times per frame depending on its implementation.
It will get called once per GUI event.

GUILayout.Button
We will use the existing Unity class GUILayout and its function Button to create
our buttons. We specify the text that we would like to display in our buttons as
well as our buttons' dimensions as parameters within the function as shown in
the following script:

function OnGUI()
{

If we click on Button 1 as input, then we print out the debug text
Button 1 clicked! to the Console window as output feedback
using the Debug.Log() function. The Debug.Log() function is very
useful for debugging/testing our games.

 if(GUILayout.Button("Button 1", GUILayout.Width(100),
 GUILayout.Height(100)))
 { Debug.Log("Button 1 clicked!");
 }

Chapter 5

[113]

If we click on Button 2 as input, then we print out the debug text
Button 2 clicked! to the Console window as output feedback
using the Debug.Log() function.
The Debug.Log() function is very useful for debugging/testing
our games.

 if(GUILayout.Button("Button 2", GUILayout.Width(100), GUILayout.
Height(100)))
 {
 Debug.Log("Button 2 clicked!");
}
}

We will now perform the following steps:

1. Create a new script by going to Assets | Create | Javascript.
2. Name the script buttons.
3. Double-click on it to open the script in MonoDevelop.
4. Replace the default existing script with the preceding script.
5. Build our script in MonoDevelop by going to Build | Build All.
6. Add the preceding script to an empty GameObject by going to

GameObject | Create Empty and dragging the script buttons.js
onto the Inspector of the empty GameObject.

7. We should get the result shown in the following screenshot when
we click on play and click on Button 1:

What's Your Input?

[114]

Game controls
In the previous chapter, we learned how to move a character left and right using
input from our keyboard. However, many games make use of virtual controls
instead, which are onscreen controls. Therefore, it is worth creating our own game
controls onscreen as opposed to entering input on the keyboard.

To do this, we will make use of sprites for the HUD to display the virtual controls
and raycasting to detect when the player touches a control for input.

Raycasting
Raycasting is a query on the scene that returns objects that intersect with a given ray
(which is a point in space with a direction). If we cast a ray from the main 2D camera
in a straight line into the screen (specified by where the player is touching/clicking),
we can then check if a collider has been hit.

If a collider has been hit, then we can check the name of the collider's GameObject.
Depending on which GameObject has been hit, we can call the appropriate script to
move the character GameObject in the corresponding direction. Let's use raycasting
by executing the given steps:

1. We download some public domain art from the following URL:
http://freeartsprites.com/free-art/Space-Pack/

2. Splice the image so that each control has been separated and the left,
right, up, and down portions have become separate sprites.

3. Convert each of these into a GameObject, and name them so that they
are identical to the following screenshot:

It is essential that they match as we will be calling those exact names in
the script.

http://freeartsprites.com/free-art/Space-Pack/

Chapter 5

[115]

4. Add a Box Collider 2D to each control by going to Add Component |
Physics 2D | Box Collider 2D.

5. We are going to check if a collider overlaps a point using
Physics2D.OverlapPoint.

6. Assign the following script to the right control:

We check which platform the player is using as shown in the
next line of code. We also declare a string variable by the name of
control to store the control object's name.

var platform : RuntimePlatform = Application.platform;

We create a function to check for input as shown in the next line
of code.

function checkTouch(pos)
{

We use raycasting to detect if the player's finger is overlapping with
the virtual onscreen controls. The first variable is the ray as a 3D
vector as shown in the next line of code.

 var wp : Vector3 = Camera.main.ScreenToWorldPoint(pos);

The next variable consists of the x and y coordinates of the player's
finger, which is shown in the next line of code.

 var touchPos : Vector2 = new Vector2(wp.x, wp.y);

The final variable returns whether or not the player's finger
coordinates overlap with a Physics 2D collider.

 var hit = Physics2D.OverlapPoint(touchPos);

What's Your Input?

[116]

If hit returns true, then we move the ship. We also detect which
control has received input by checking the name of the object that has
received a collision on its collider. We then print it to our log to keep
track and then check if the whether it was the right control that was
pressed so that we move the ship to the right.

if(hit){
 control = hit.transform.name;
 print(""+control);
 if (control == "right")
 {
 move();
 }
 }
}

We check to see the device the player is using for input. For instance,
if they are using a mobile device, then we use the touch functions for
input detection; otherwise, we use the mouse functions for a PC.
With the respective functions, we check when a finger touches the
screen for a mobile, or the mouse is pressed down for a PC, and then
check the position in coordinates of the finger or mouse.

function Update()
{
 if(platform == RuntimePlatform.Android || platform ==
RuntimePlatform.IPhonePlayer){
 if(Input.touchCount > 0) {
 if(Input.GetTouch(0).phase == TouchPhase.Began){
 checkTouch(Input.GetTouch(0).position);
 }
 }
 }else if(platform == RuntimePlatform.WindowsEditor){
 if(Input.GetMouseButtonDown(0)) {
 checkTouch(Input.mousePosition);
 }
 }
}

To move our ship, we find the Ship GameObject in the scene by
its name. We then move it using transform.Translate, which
moves the transform in the direction and at the distance of the
translation relative to something.
In this case, we translate the ship's position using a 3D vector moving
to the right direction multiplied by the distance of 10 units per second
moving relative to the camera.

Chapter 5

[117]

function move()
{

 ship = GameObject.Find("Ship");

 ship.transform.Translate(Vector3.right *
 (Time.deltaTime*10), Camera.main.transform);

}

7. We will use the ship we used in the previous chapter.
8. When we click on play, the ship should move in the corresponding direction.
9. We copy the script three more times and use exactly the same script that

we used before for the left, up, and down controls by simply replacing
the direction: ship.transform.Translate(Vector3.right * (Time.
deltaTime*10), Camera.main.transform);

10. We build our code by going to Build | Build All and click on the play
button in Unity to test it.

The following screenshot displays our ship with virtual controls:

What's Your Input?

[118]

Summary
In this chapter, we learned all about the various input types and states and learned
to create buttons as well as the game controls by using code snippets for input
detection.

In the next chapter, we will learn how to create our first, basic 2D game in Unity with
UnityScript. This game will include movement, collisions, triggers, states, projectiles,
boundaries, and randomly spawning entities.

Game #1 – Roguelike
"The family of roguelike games is based on the video game Rogue, programmed for

Unix-based systems in 1980."

– Jeremy Parish, The Essential 50 Part 12 – Rogue,

http://www.1up.com/features/essential-50-rogue

Overview
In this chapter, we will learn how to create our very first basic 2D game in Unity
with UnityScript! This game will include movement, collisions, states, projectiles,
and randomly spawning entities.

The following is the list of topics that will be covered in the chapter:

• What is Roguelike?
• Background
• Animating the hero
• Movement controls
• Randomly spawning enemies
• Animating the enemy
• Enemy movement
• Shooting projectiles
• Collisions
• Permadeath

Game #1 – Roguelike

[120]

What is Roguelike?
Roguelike is a genre of games that includes the following game elements: a fantasy
theme, random levels, permadeath (permanent death), and tile-based graphics.

However, there are many variations that make the genre innovative using some
of those elements at varying degrees together with elements that do not normally
fall within the Roguelike genre.

There has been a huge boom in Roguelike games recently with many successful
new indie Roguelike games being released.

The game design advantages they provide are as follows:

• Replay value: Players can play the game over and over again. Each game
feels unique since it contains random elements.

• Simplicity: Roguelike games can be simple since they already provide
enough variety with their randomness and challenge difficulty.

• Accountability: Players feel the need to be responsible for their actions
and improve their strategy; otherwise, they will lose their character's
progress permanently.

• Challenging: With permanent death, players really feel the challenge
in difficulty.

The main game development advantage that they provide is that they are normally
simple to create yet provide variety and challenge.

Chapter 6

[121]

The following screenshot displays Nethack, a Roguelike game:

Nethack, viewed July 12, 2014, http://en.wikipedia.org/wiki/
Roguelike#mediaviewer/File:Vultures-2.1.0_screenshot.jpg

Game #1 – Roguelike

[122]

Adding a background
The first thing we need to do is create a new project by going to File | New Project…
and name it Roguelike. We can then add a background to our game. We download
and unzip the image Grassbg.png that we will use for our background from the
following URL:

http://freeartsprites.com/roguelike/

We simply add the following sprite to our scene and resize it to cover the entire
camera view:

We name the sprite background. Then, we set the value of the Order in Layer option
in Sprite Renderer to -1.

Chapter 6

[123]

Animating the hero
The next thing we need to do is add a hero to the game. We will want to animate our
hero as our hero is organic and not an inanimate object. We download and unzip the
hero's sprite sheet WizardSpriteSheet.png from the following URL:

http://freeartsprites.com/roguelike/

The Wizard sprite sheet is shown in the following image:

1. Slice the sprite sheet using the grid option, and use the dimensions X = 348,
Y = 384, and Pivot = Center.

2. Create a hero GameObject. Name the GameObject hero.
3. Add a Box Collider by going to Add Component | Physics 2D | Box

Collider 2D.

We now create the first animation of the hero walking down.

Game #1 – Roguelike

[124]

The Walking Down animation
We click on the hero and then open the Animation View by going to
Window | Animation.

1. Click on the empty space to open the drop-down menu, and then
go to Create New Clip as shown in the following screenshot:

2. We name the animation walkDown.anim.
3. Set the Sample option to 5.
4. Add the following sprite WizardSpriteSheet_0 at the frame location 0:00

on the animation timeline by simply dragging the sprite asset beneath 0:00:

Chapter 6

[125]

5. Add the following sprite WizardSpriteSheet_1 at the frame location 0:10
on the animation timeline by simply dragging the sprite asset beneath 0:10:

6. Add the following sprite WizardSpriteSheet_2 at the frame location 0:20
on the animation timeline by simply dragging the sprite asset beneath 0:20:

7. Add the sprite WizardSpriteSheet_1 again at the frame location 0:30 on
the animation timeline by simply dragging the sprite asset beneath 0:30.

Make sure that you stop recording by clicking on the record
button so that it is no longer selected in a red tint.

Game #1 – Roguelike

[126]

8. We should have the result shown in the following screenshot:

If the sprites were in the correct order within the sprite sheet, then a
quicker way of creating the animation is to select all the sprites for
that animation and dragging them all at once onto the Animation
View timeline and then setting the Sample option to 5 to space them
out. This way, the animation does not play too fast, but instead at the
speed of 5 frames per second.

The Walking Left animation
Following from the Walking Down animation, let's move to the left by executing
the following steps:

1. Select Create New Clip from the drop-down menu.
2. Name the animation walkLeft.anim.
3. Set the Sample option to 5.
4. Set the timeline as per the following table:

Sprite Name Timeline Frame
WizardSpriteSheet_3 0:00
WizardSpriteSheet_5 0:10
WizardSpriteSheet_4 0:20
WizardSpriteSheet_5 0:30

Chapter 6

[127]

The Walking Right animation
Now, it's time to move to the right. Let's execute the following steps to do this:

1. Select Create New Clip from the drop-down menu.
2. Name the animation walkRight.anim.
3. Set the Sample option to 5.
4. Set the timeline as per the following table:

Sprite name Timeline frame
WizardSpriteSheet_7 0:00
WizardSpriteSheet_6 0:10
WizardSpriteSheet_8 0:20
WizardSpriteSheet_6 0:30

The Walking Up animation
Let's finish the walking while moving upwards.

1. Select Create New Clip from the drop-down menu.
2. Name the animation walkUp.anim.
3. Set the Sample option to 5.
4. Set the timeline as per the following table:

Sprite name Timeline frame
WizardSpriteSheet_9 0:00
WizardSpriteSheet_10 0:10
WizardSpriteSheet_11 0:20
WizardSpriteSheet_10 0:30

We covered animation creation in Chapter 3, Add Some Character.
Please refer to this chapter for more information.

Game #1 – Roguelike

[128]

Movement controls
Now that we have our hero character's animations ready, we can detect input from
the player in order to control the hero's movement.

We will play the animation that corresponds with the direction that the hero is moving.
We will use the W, A, S, and D keys on our keyboard as our movement keys.

Before we can detect input in script and then output the corresponding animation,
we first need to set the states and order the transitions between multiple animations
using the Animator.

Movement Controls Animator
We assign the Animator component to the hero GameObject within the Inspector
by going to Add Component | Miscellaneous | Animator. Then, within the
Animator View (you can open this by going to Window | Animator), order the
animation states we created by right-clicking and adding transitions with directions
that match the following screenshot:

We add the following Boolean parameters to the Parameters box within the
Animator View. To do this, we click on the plus sign, select Bool, and then
name the parameters as follows:

• right

• down

Chapter 6

[129]

• up

• left

We click on each transition individually and check the Inspector. At the bottom
of the Inspector, we set the condition to match the direction the transition arrow
is pointing to, with the name of the corresponding parameter. For instance, if the
arrow is going from walkDown and pointing towards walkRight, we select the right
parameter. Similarly, if the transition is going from walkLeft to walkRight, we
again select the right parameter. However, if the transition is going from walkRight
to walkLeft, then we select the left parameter.

The following screenshot displays the location of the condition within the Inspector:

Game #1 – Roguelike

[130]

Movement controls script
We move the hero on the lines of the movement script we created in Chapter 4, Code

Control. The main addition here is that we set the values of the parameters we have
created within the Animator using the animator.setBool function in the following
script, which we will name Hero.js and assign to the hero character:

Declare the variable for the speed the hero will move at as shown in
the next line of code.

var speed:float = 2.0;

Declare the direction variables for the movement states that the hero
will travel at on his own. This is shown in the next code snippet.

var right:boolean = false;
var left:boolean = false;
var up:boolean = false;
var down:boolean = false;

Declare the variable to store the Animator component attached to
the ninja GameObject.

var animator: Animator;

At the start of our game, we get the Animator component attached
to our ninja GameObject and assign it to our Animator variable we
declared so that we can access the parameters within the Animator.

function Start()
{
animator = GetComponent("Animator");
}

We call our MoveCharacter function within Fixed Update
instead of Update as we are using a Rigidbody—when using
Physics, we need to ensure that the updates occur in sync with
the Physics engine as using Update could cause inconsistencies
depending on the frame rate of the game.

Chapter 6

[131]

function FixedUpdate()
{
MoveCharacter();
}

There is a function to move the hero. This is shown in the next line
of code.

function MoveCharacter()
{

Detect if the input key from the keyboard is D. This is shown in the
next line of code.

if (Input.GetKey(KeyCode.D))
{

If the D key is pressed, then we call the Animator function and set
the right parameter of the Animator's bool function to true
and the rest of the parameters to false. This is so that the other
animations transition to the walkRight animation. This is shown
in the next code snippet.

 animator.SetBool("left", false);
 animator.SetBool("up", false);
 animator.SetBool("down", false);
 animator.SetBool("right", true);

We do the same with the movement states. This is shown in the
next code snippet.

 down = false;
 left = false;
 right = true;
 up = false;

Move the character to the right using transform.Translate,
which is the function that moves a GameObject's position
based on direction and distance. The first parameter passes the
direction, and the next two parameters, being speed and time,
pass the distance as distance is speed over time.

Game #1 – Roguelike

[132]

We use vector3.right, which is the shorthand for a predefined
vector moving right which is (-1,0,0).
We then multiply by the speed that we want the character to move
right at and then the amount of time we want the character to be
moving right, which in this case is for as long as the player is pressing
down the D key.
We use Time.deltaTime for this as it makes the movement frame
independent, allowing the character to move a certain distance per
second instead of per frame because it calculates the seconds that have
passed since the last frame. This is shown in the next code snippet.

 transform.Translate(Vector3.right * speed * Time.deltaTime);
}

Once we have moved the hero to the right and therefore set his
movement state to the right, he will continue moving to the right on
his own when we are no longer pressing the D key. This is shown in
the next code snippet.

if (right == true)
{
 transform.Translate(Vector3.right * speed * Time.deltaTime);
}

Once we have moved the hero to the left and therefore set his
movement state to the left, he will continue moving to the left on his
own when we are no longer pressing the A key. This is shown in the
next code snippet.

if (left == true)
{
 transform.Translate(Vector3.left * speed * Time.deltaTime);
}

Once we have moved the hero up and therefore set his movement
state to up, he will continue moving up on his own when we are no
longer pressing the W key. This is shown in the next code snippet:

Chapter 6

[133]

if (up == true)
{
 transform.Translate(Vector3.up * speed * Time.deltaTime);
}

Once we have moved the hero down and therefore set his
movement state to down, he will continue moving down on his
own when we are no longer pressing the S key. This is shown in
the next code snippet.

if (down == true)
{
 transform.Translate(Vector3.down * speed * Time.deltaTime);
}

Detect if the input key from keyboard is S. This is shown in the
next line of code.

if (Input.GetKey(KeyCode.S))
{

If the S key is pressed, then we call the Animator function and
set the the down parameter Animator's bool function to true
and the rest of the parameters to false. This is so that the other
animations transition to the walkDown animation.

 animator.SetBool("left", false);
 animator.SetBool("up", false);
 animator.SetBool("right", false);
 animator.SetBool("down", true);

We do the same with the movement states. This is shown in the
next code snippet.

 down = true;
 left = false;
 right = false;
 up = false;

Game #1 – Roguelike

[134]

The hero moves down while we are pressing the S key. This is
shown in the next line of code.

 transform.Translate(Vector3.down * speed * Time.deltaTime);
}

Detect if the input key from the keyboard is A. This is shown in
the next line of code.

if (Input.GetKey(KeyCode.A))
{

If the A key is pressed, then we call the Animator function and
set the left parameter of the Animator's bool function to
true and the rest of the parameters to false. This is so that the
other animations transition to the walkLeft animation. Have a
look at the next lines of code.

animator.SetBool("down", false);
 animator.SetBool("right", false);
 animator.SetBool("up", false);
 animator.SetBool("left", true);

We do the same with the movement states. Have a look at the
next code snippet.

 down = false;
 left = true;
 right = false;
 up = false;

The hero moves left while we are pressing the A key. Have a
look at the next line of code.

 transform.Translate(Vector3.left * speed * Time.deltaTime);
}

Chapter 6

[135]

Detect if the input key from the keyboard is W. Have a look at
the next line of code.

if (Input.GetKey(KeyCode.W))
{

If the W key is pressed, then we call the Animator function and
set the up parameter Animator's bool function to true and
the rest of the parameters to false. This is so that the other
animations transition to the Walking Up animation. Have a look
at the next code snippet.

 animator.SetBool("right", false);
 animator.SetBool("down", false);
 animator.SetBool("left", false);
 animator.SetBool("up", true);

We do the same with the movement states. Have a look at the next
code snippet.

 down = false;
 left = false;
 right = false;
 up = true;

The hero moves up while we press the W key. Have a look at the
next line of code.

 transform.Translate(Vector3.up * speed * Time.deltaTime);
}
}

Game #1 – Roguelike

[136]

Randomly spawning enemies
We are now going to add enemies to the game. Let's do this by executing the
following steps:

1. To add the enemy, we download and unzip the DwarfSpriteSheet
file from the following URL:
http://freeartsprites.com/roguelike/

The Dwarf sprite sheet is shown in the following image:

Chapter 6

[137]

2. Slice the sprite sheet and create an enemy GameObject.
3. Name the GameObject enemy.
4. Add a Box Collider by going to Add Component | Physics 2D | Box

Collider 2D.
5. Add a Rigidbody 2D component to our enemy GameObject by going

to Add Component | Physics 2D | Rigidbody 2D.
6. Create the enemy idle animation the same way we created the hero

idle animation.
7. We spawn multiple enemies by creating instances of our enemy

GameObject.
8. Add the following lines to our hero script:

var enemy:Rigidbody2D;

function enemySpawn()
{
var enemyInstance:Rigidbody2D;

 enemyInstance = Instantiate(enemy,
 Vector3(Random.Range(2, 8),Random.Range(-4, 4),0),
 Quaternion.Euler(new Vector3(0,0,0)));
 }

9. Within the start() function's braces, we add the following line to call
the function once at the very start of the game:
enemySpawn();

10. Finally, we add the following line of script within the hero script outside
of any functions:

InvokeRepeating("enemySpawn", 3, 3);

This is a built-in Unity method that will repeatedly call the function at the times
we set, starting at three seconds after the game has started and then every three
seconds after that.

When the function is called, it will create an enemy at a random x and y
location within the ranges that we set Random.Range(2, 8) and Random.Range
(-4, 4) respectively.

Game #1 – Roguelike

[138]

The preceding script will not work unless we assign a value to the
enemy variable within the Unity Editor.

Refer to the Destroying the enemy section in Chapter 4, Code Control
on how to assign unassigned variables that we declare in the script
within the Inspector in Unity.

Animating the enemy
Similar to the hero, we create four animations for all four directions that the enemy
will travel in:

• enemyWalkLeft.anim

• enemyWalkRight.anim

• enemyWalkUp.anim

• enemyWalkDown.anim

We add the Animator component and set it up exactly the same way as we did
for the hero.

Make sure to add the parameters just as we did for the hero and
name them enemyLeft, enemyRight, enemyUp, and enemyDown.

Enemy movement
To move our enemies, we create a script similar to the hero's movement controls
script. The only additions are the Accelerate and InvokeRepeating functions.

Accelerate increases the speed of the enemies' movement and InvokeRepeating
calls the Accelerate function to increase the enemies' speed every five seconds.

The enemy will follow the movements of the hero moving diagonally to catch
up with the hero and therefore have a more natural, realistic movement.

Chapter 6

[139]

Add the following script, name it enemy.js, and assign it to our enemy GameObject:

var heroObj:GameObject;

var enemyRight:boolean = false;
var enemyLeft:boolean = false;
var enemyUp:boolean = false;
var enemyDown:boolean = false;
var enemySpeed:float;
var enemyAnimator: Animator;

InvokeRepeating("Accelerate", 2, 5);

function Start()
{
enemySpeed = 1.0;
}

function Update()
{
enemyMove();
}

function enemyMove()
{

For performance and best practice, we could move the Find()
method within the Start() function instead of being performed
in every Update(). These are slow methods and Unity
recommends that we avoid using them inside Update()
unless necessary.

 heroObj = GameObject.Find("hero");
 enemyAnimator = GetComponent("Animator");
 if (heroObj != null)
 {
 if (transform.position.y > heroObj.transform.position.y)
 {

Game #1 – Roguelike

[140]

 enemyAnimator.SetBool("enemyLeft", false);
 enemyAnimator.SetBool("enemyUp", false);
 enemyAnimator.SetBool("enemyDown", true);
 enemyAnimator.SetBool("enemyRight", false);
 enemyDown = true;
 enemyLeft = false;
 enemyRight = false;
 enemyUp = false;
 transform.Translate(Vector3.down * enemySpeed *
 Time.deltaTime);

 }
 else
 {
 enemyAnimator.SetBool("enemyLeft", false);
 enemyAnimator.SetBool("enemyUp", true);
 enemyAnimator.SetBool("enemyDown", false);
 enemyAnimator.SetBool("enemyRight", false);
 enemyDown = false;
 enemyLeft = false;
 enemyRight = false;
 enemyUp = true;
 transform.Translate(Vector3.up * enemySpeed *
 Time.deltaTime);
 }

 if (transform.position.x < heroObj.transform.position.x)
 {

 enemyAnimator.SetBool("enemyLeft", false);
 enemyAnimator.SetBool("enemyUp", false);
 enemyAnimator.SetBool("enemyDown", false);
 enemyAnimator.SetBool("enemyRight", true);
 enemyDown = false;
 enemyLeft = false;
 enemyRight = true;
 enemyUp = false;
 transform.Translate(Vector3.right * enemySpeed *
 Time.deltaTime);
 }
 else
 {

Chapter 6

[141]

 enemyAnimator.SetBool("enemyLeft", true);
 enemyAnimator.SetBool("enemyUp", false);
 enemyAnimator.SetBool("enemyDown", false);
 enemyAnimator.SetBool("enemyRight", false);
 enemyDown = false;
 enemyLeft = true;
 enemyRight = false;
 enemyUp = false;
 transform.Translate(Vector3.left * enemySpeed *
 Time.deltaTime);
 }
}
}

function Accelerate()
{
enemySpeed = enemySpeed + 1;
}

Shooting projectiles
To ensure that the hero can fight and defeat the enemies, we will give him the ability
to shoot magical orbs at the enemies. Let's execute the following steps to do this:

1. Create an orb GameObject by downloading and unzipping the Orb.png
sprite from the following URL:
http://freeartsprites.com/roguelike/

The orb sprite is shown in the following image:

Game #1 – Roguelike

[142]

2. We name the orb GameObject orb.
3. Add a Circle Collider by going to Add Component | Physics 2D | Circle

Collider 2D.
4. Then, go to Add Component | Physics 2D | Rigidbody 2D.

The script is similar to the previous shooting script that we created in Chapter 4, Code

Control. The only difference is that we will add conditional checks to make sure that
the hero can shoot in all four directions depending on which direction he is facing
and traveling.

Add the following code to our hero script:

var orb:Rigidbody2D;
var orbSpeed:float = 20f;
var orbSpeed2:float = -20f;

function Update ()
{

var orbInstance:Rigidbody2D;

 if(Input.GetButtonDown("Fire1"))
 {

orbInstance = Instantiate(orb, transform.position,
 Quaternion.Euler(new Vector3(-1,0,0)));

if (right==true)
{
 orbInstance.velocity = new Vector2(orbSpeed, 0);
}
if (left==true)
{
 orbInstance.velocity = new Vector2(orbSpeed2, 0);
}

if (up==true)
{

Chapter 6

[143]

 orbInstance.velocity = new Vector2(0, orbSpeed);
 }
if (down==true)
 {
 orbInstance.velocity = new Vector2(0, orbSpeed2);
 }

}
}

The preceding script will not work unless we assign a value to the
orb variable within the Unity Editor.
Refer to the Destroying the enemy section in Chapter 4, Code Control,
on how to assign unassigned variables that we declare in a script
within the Inspector in Unity.

Detecting collisions
In order to detect any collisions, we need to ensure that our hero, orb, and
enemy GameObjects have Box Collider 2D components added to them.

When the magical orbs that we just added collide with an enemy, we want
to destroy the enemy by detecting if the colliders of both the enemy and the
orb collide.

Add the following code to the enemy script:

function OnCollisionEnter2D(other:Collision2D)
{
 if(other.gameObject.name=="orb(Clone)")
 {
 Destroy(other.gameObject);
 Destroy(gameObject);

 }

}

Game #1 – Roguelike

[144]

Permadeath
When an enemy collides with the hero, the hero will die, and the game will end.
The point of the game is to try and survive for the longest time; therefore, the score
is based on time.

We will use the OnGUI function to display the time counting up at the top-left corner
of the screen. We will also check to see whether the hero collides with an enemy,
and if so, then we destroy the hero and end the game.

Add the following script to the hero script:

#pragma strict

function OnGUI()
{

 GUI.Box (Rect (10,10,100,90), ""+Time.time);
}

function OnCollisionEnter2D(other:Collision2D){
 if((other.gameObject.name=="enemy(Clone)")||(
 other.gameObject.name=="right")||(other.gameObject.name==
 "left")||(other.gameObject.name=="bottom")||(
 other.gameObject.name=="top"))
 {
 Time.timeScale = 0;
 Destroy(gameObject);

 }

}

Chapter 6

[145]

End game result
We can now press the play button in Unity to play our game. The following
screenshot displays our Roguelike game:

Summary
In this chapter, we created our very first 2D Roguelike game using Unity. The game
consisted of a background, an animated hero that shoots projectiles, animated
enemies that randomly spawn and follow the hero, and permadeath once a collision
is detected. In the next chapter, we will learn about game conditions and how to
display them on the screen by implementing a HUD with all the UI elements in a
classic arcade game.

Game #2 – Classic Arcade
"To me the arcade experience is the ultimate gaming experience."

– Eugene Jarvis

Overview
In this chapter, we will learn about game conditions and how to display them on
the screen. We will do this by implementing a HUD with all the UI elements into
a classic arcade game. In brief, we will be looking at the following topics:

• Sponge antics
• Game conditions
• Lives
• Score
• Time
• Adding an HUD
• Font style
• The completed game

Sponge antics
For our second game, we will create a classic arcade game where the player will
need to catch the falling grime while avoiding the falling cleaning acid.

Game #2 – Classic Arcade

[148]

Our main character – Spongy
Our main character is called Spongy, and it likes to keep the bathroom all sparkling
clean. In order to do so, it must catch all the falling grime. However, Spongy must
watch out for the falling cleaning chemicals as they contain acid that will harm it.

The bathroom
We will now create the environment of our game.

1. To begin with, we create our bathroom environment by adding the
background to the scene from the following URL:
http://freeartsprites.com/free-art/classic-arcade/

2. Name the background GameObject Bathroom.
For this game, we will use the aspect ratio 5:4 (which is a screen resolution
of 1280 x 1024 pixels) as the design of the game makes use of more height
than width.
This is because the game makes use of objects falling vertically from the
top of the screen downwards.

3. To change our aspect ratio, we click on the drop-down box within the
Game View, as shown in the following screenshot:

http://freeartsprites.com/free-art/classic-arcade/

Chapter 7

[149]

4. Move the background so that it fits perfectly in the scene. The background
should fit perfectly since it has the exact same dimensions as the screen
resolution we are using for this game.

Adding Spongy
We will now add our main character.

1. We now add Spongy using the Sponge.png file. To do this, we have to
download ClassicArcade.zip from the following URL and unzip it:
http://freeartsprites.com/free-art/classic-arcade/

2. Import the sprite into Unity.
3. We then slice the sprite sheet and use only one of the sprites, in a manner

similar to the following image, as a GameObject:

4. Name this GameObject Spongy, and add the Box Collider 2D component
by going to Add Component | Physics 2D | Box Collider 2D within
the Inspector.

http://freeartsprites.com/free-art/classic-arcade/

Game #2 – Classic Arcade

[150]

5. Move Spongy in the Scene View so that it is positioned above the bottom
background tiles, as shown in the following screenshot:

6. Create a script called Spongy.js, and assign it to the Spongy GameObject.

Moving left and right
We now need to add the game controls for our game. To move Spongy left and right,
we add the following script to the Spongy.js script:

First, add a comment with the script name as shown in the next line
of code.

//Spongy.js

The next line of code is used to ensure strict typing—if you use the
same variable for different data types, then an error will be thrown
when building the script. This prevents bugs from occurring. Have
a look at the next line of code.

#pragma strict

Chapter 7

[151]

Declare a decimal variable and assign the 3 seconds speed that
Spongy will move at. Have a look at the next line of code.

var speed:float = 3.0;

The next line of code can be removed as it is not being
used.

function Start ()
{

}

The function to move Spongy gets called every frame. Have a
look at the next code snippet.

function Update ()
{
 MoveCharacter();
}

The next code snippet is a function to move Spongy.

function MoveCharacter()
{

Detect whether the input key from the keyboard is A. This is
shown in the next line of code.

if (Input.GetKey(KeyCode.A))
{

Game #2 – Classic Arcade

[152]

We then move Spongy using transform.Translate, which moves
the transform in the direction and distance of the translation relative
to something.
In this case, we translate Spongy's position using a 3D vector moving to
the left direction multiplied by the distance of 3 units per second, which
is speed multiplied by time moving relative to space since there is no
third parameter.
We multiply against Delta Time to ensure that the animation is
frame-rate independent; otherwise, should the frame rate drop at any
time, the animation will slow down, and likewise, should it increase, the
animation will speed up. Not only would this look wrong, but it would
also not control correctly. The next line of code shows how this is done.

 transform.Translate(Vector3.left * speed * Time.deltaTime);
}

Detect whether the input key from keyboard is D. The next line of code
shows how this is done.

if (Input.GetKey(KeyCode.D))
{

We then move Spongy using transform.Translate, which moves
the transform in the direction and distance of the translation relative
to something.
In this case, we translate Spongy's position using a 3D vector moving
to the right direction multiplied by the distance of 3 units per second,
which is speed multiplied by time moving relative to space as there is
no third parameter.

Chapter 7

[153]

Spawning grime
We are now going to add the grime that will spawn from above and drop
downwards towards Spongy. Let's execute the following steps to do this:

1. Add the grime by downloading the sprites from http://freeartsprites.
com/free-art/classic-arcade/. We then slice the sprite sheet and use
only one of the sprites as a GameObject, as shown in the following image:

2. We name this GameObject Grime and add the Rigidbody 2D component
as well as the Box Collider 2D component.

3. We then create a script called Grime.js and assign it to the Grime
GameObject.

4. To spawn the grime randomly, we add the following script to Grime.js:

Add a comment with the script name. The next line of code shows
how this is done.

//Grime.js

The next line of code is used to ensure strict typing—if you use the
same variable for different data types, then an error will be thrown
when building the script. This prevents bugs from occurring. The
next line of code shows how this is done.

#pragma strict

http://freeartsprites.com/free-art/classic-arcade/
http://freeartsprites.com/free-art/classic-arcade/

Game #2 – Classic Arcade

[154]

Declare our grime variable and set its data type to Rigidbody2D.
Have a look at the next line of code.

var grime:Rigidbody2D;

Declare a decimal variable and assign the 3 seconds speed that the
grime will move at.
We set it to -3 since we want it to move down. The next line of
code shows how this is done.

var speed:float = -3.0;

The next code can be removed as it is not being used by us.

function Start ()
{

}

function Update ()
{

}

We use the InvokeRepeating function to spawn the grime
by calling the SpawnGrime function with the first parameter.
The function is called starting at 3 seconds by the second
parameter, and then it gets called repeatedly every 10
seconds specified by the third parameter. Have a look at the
next line of code.

InvokeRepeating("SpawnGrime", 3, 10);

The next function is used to spawn the grime.

function SpawnGrime()
{

Chapter 7

[155]

Declare a variable of an instance of our Rigidbody2D GameObject.
The next line of code shows how this is done.

 var grimeInstance:Rigidbody2D;

Spawn an instance of the obstacle GameObject using the Unity
function Instantiate and assign it to our variable.
The first parameter is the gameobject. We want to make an
instance of the grime.
The second parameter is the position of the newly spawned grime
whereby we use a vector with a random range of coordinates
between -8 and 8 along the x axis, a y coordinate of 7, and a z
coordinate of 0 as this is a 2D game.
The final parameter is the rotation/orientation of the newly
spawned grime, and thus we use a quaternion. Within it, we create
a new 3D vector because the variable is uninitialized. Have a look
at the next code snippet.

grimeInstance = Instantiate(grime, Vector3(Random.Range(-8,
 8),7,0), Quaternion.Euler(new Vector3(0,0,0)));
grimeInstance.name = "Grime(Clone)";

Using the velocity variable with a speed parameter along the y
axis of a 2D vector will make the object move by itself because the
Unity physics engine will move it for us. This is fundamentally
different from our manually moving an object using the
Translate() method.

grimeInstance.velocity = new Vector2(0, speed);

}

function OnCollisionEnter2D(other:Collision2D)
{

 if(other.gameObject.name=="Spongy")
 {
 Destroy(gameObject);
 }

}

Game #2 – Classic Arcade

[156]

Each instance creates a new name for the respective occurrence, for example,
Grime(Clone), then Grime(Clone)(Clone), Grime(Clone)(Clone)(Clone),
and so on. A way to check whether Spongy is colliding with any of them is to
rename all of them to Grime(Clone).

This is the reason we used the following line in the previous script right before
the preceding code snippet:

grimeInstance.name = "Grime(Clone)";

We will use it for the acid as well. Make sure to assign the grime GameObject to
the grime variable within the Inspector in the Unity Editor.

Spawning acid
Now, we will add the acid that will also fall from above in the following manner:

1. Add the acid sprite by downloading the given sprite from the following URL:
http://freeartsprites.com/free-art/classic-arcade/

2. We then slice the sprite sheet and use only one of the sprites in the following
image as a GameObject:

3. We name this GameObject Acid and add the Rigidbody 2D component
as well as the Box Collider 2D component.

4. We then create a script called Acid.js and assign it to the Acid GameObject.
5. The script we will create is exactly the same as the script we created for

the grime, the only difference being the naming of the script, function,
and variables.

http://freeartsprites.com/free-art/classic-arcade/

Chapter 7

[157]

6. Add the following script to Acid.js:
//Acid.js

#pragma strict

var acid:Rigidbody2D;

var speed:float = -3.0;

var SpongyObj:GameObject;

function Start ()
{

}

function Update ()
{

}

InvokeRepeating("SpawnAcid", 3, 5);

function SpawnAcid()
{
 var acidInstance:Rigidbody2D;

acidInstance = Instantiate(acid, Vector3(Random.Range(-8,
 8),7,0), Quaternion.Euler(new Vector3(0,0,0)));
acidInstance.name = "Acid(Clone)";
acidInstance.velocity = new Vector2(0, speed);

}

function OnCollisionEnter2D(other:Collision2D)
{

 if(other.gameObject.name=="Spongy")
 {
 Destroy(gameObject);
 }

}

Make sure to assign the Acid GameObject to the Acid.js script within the Inspector
in the Unity Editor.

Game #2 – Classic Arcade

[158]

Game conditions
Game conditions are the rules that dictate a victory or loss. This game will include
the following conditions:

• Lives
• Timer
• Score

Lives
The player will start the game with three lives. Each time Spongy comes into
contact with the acid blobs, the player will lose a life.

Should the player lose all three lives, then the game is over. To stop gameplay,
we use the following line:

Time.timeScale = 0;

It is also useful for not only pausing and resuming, but also for slow and fast
forward effects.

Add the following script to Spongy.js:

var lives:int = 3;

function OnCollisionEnter2D(other:Collision2D)
{
 if(other.gameObject.name=="Acid(Clone)")
 {
 lives = lives - 1;

 if (lives == 0)
 {
 Time.timeScale = 0;

 }

 }

 //will add score here

}

Chapter 7

[159]

Score
The main objective of victory is the score. For each grime that Spongy collects,
the player receives an added score of 50 points.

1. Add the following variable to Spongy.js at the very top:
var score:int = 0;

2. Insert the following script beneath the comment //will add score here:

if(other.gameObject.name=="Grime(Clone)")
 {
 score = score + 50;
 }

Time
The game will also include time as a secondary objective to show how long the
player has survived each play. We will add our time using Time.time within
the heads-up display (HUD) mentioned next.

Adding an HUD
To add the HUD that will display lives, score, and time, we add the following script
to Spongy.js:

function OnGUI()
{
 GUI.Box (Rect (10,10,100,30), "Time: "+Time.time);
 GUI.Box (Rect (500,10,100,30), "Score: "+score);
 GUI.Box (Rect (600,10,100,30), "Lives: "+lives);
}

Using the existing Unity GUI function that gets called automatically, we create a
rectangle with a size that we specify consisting of the x and y starting position of the
rectangle followed by the x and y ending position.

We then add the string of text that we would like to display within the box followed
by the plus sign and the variable. The plus sign concatenates (joins) the variable into
the string so that it can be displayed as a string since the GUI.Box method can only
display string types.

Game #2 – Classic Arcade

[160]

Font style
To edit the font that displays on our HUD, we add the following line of script to
the Spongy.js script at the very top of the script alongside the other variables:

Var myStyle: GUIStyle;

When we click on the Spongy GameObject, we should get the following in
the Inspector:

When clicking on the My Style drop-down list, there are many sub-attributes that
we can edit in order to create our own font style. For instance, we can change the
timer's color from black to red by going to Normal | Text Color and selecting red.

Chapter 7

[161]

We can also make the font bigger by setting the Font Size option to 20.

To apply it to the timer so that the changes only affect the Timer HUD, we add
myStyle to the existing timer GUI.Box that we have already created, as shown
in the following script:

GUI.Box (Rect (10,10,100,30), "Time: "+Time.time, myStyle);

Resource management
When developing games, it is vital that we are wise at resource management and
reuse the resources available to us. We should not waste resources since devices
do not have an infinite amount of resources available.

Thus, by wasting resources, we are increasing the overhead on the device's memory
and processor, impacting performance. For instance, if we keep creating many new
objects in a scene, there is a huge amount of information to store, calculate, and
handle. This will slow down the game and could potentially crash the game due
to it running out of memory or an overload of calculations.

It is therefore best practice to reuse or destroy (remove) objects once they are no
longer needed, particularly when they are no longer on screen.

Garbage collection is a type of memory management whereby the garbage collector
tries to reclaim memory that is no longer being used by the game. Unity performs
garbage collection automatically; however, based on the game's design, we need
to decide when objects need to be created and destroyed.

In order to delete all the grime objects in the scene (both on screen and off screen)
at the end of the game, we need to group the objects.

In Unity, we use tags to group objects.

To create a tag, we have to execute the following steps:

1. We select Acid in the hierarchy and then within the Inspector, we click on
the Tag drop-down menu and select Add Tag….

2. Within the Element 0 field under Tags & Layers, we add Acid and within
Element 1, we add Grime.

3. Select Acid from the hierarchy again and click on the Tag drop-down menu
again; this time Acid will appear. Select Acid.

Game #2 – Classic Arcade

[162]

4. It should now look like what is shown in the following screenshot:

We do the same for Grime.

As we want to keep track of all the objects, we need to place them in
a list within the script. To achieve this, we will make use of an array
since an array is a variable-sized list. Have a look at the next code
snippet to learn how this is done.

var gameObjects : GameObject[];

function RemovalGrime()
{

We check whether the GameObject is in the Grime tag group that we
created.

 gameObjects = GameObject.FindGameObjectsWithTag("Grime");

We use a conditional for loop to go through each object stored
in the list as many times as there are items in the list specified by
the length of the GameObjects list (until the last item on the list)
provided by the second parameter.
We start at the first item that is provided by the first parameter and
increment by one each time to go on to the next object within the list.
The next code snippet shows how this is done.

for(var i = 0 ; i < gameObjects.length ; i ++)
 Destroy(gameObjects[i]);
}

We do the same for Acid as we did for Grime, merely swapping the
names. Have a look at the next code snippet to learn how this is done.

Chapter 7

[163]

function RemovalAcid()
{

 gameObjects = GameObject.FindGameObjectsWithTag("Acid");

 for(var i = 0 ; i < gameObjects.length ; i ++)
 Destroy(gameObjects[i]);
}

We then need to make sure we call the new functions within the following part
of existing script:

if (lives == 0)
 {
 RemovalAcid();
 RemovalGrime();
 Time.timeScale = 0;

 }

The completed game
By adding all the preceding GameObjects with their components into the scene
and pressing play to test our game, we now have our completed game, which
should look similar to what is shown in the following screenshot:

Game #2 – Classic Arcade

[164]

Summary
In this chapter, we learned about the widely used game conditions: lives, timer,
and score, and how to display them on screen by implementing a HUD with
all its elements in a classic arcade game. We also went into detail on how to set
up our own font style.

In the next chapter, we will learn about the new 2D parallax scrolling in Unity
and how to use it to create our own side-scrolling endless runner, polished up
with particle effects.

Game #3 – Endless Runner
"The concept of an endless runner is simple. You run until you die. Despite its

simplicity, endless running games are among the most ubiquitous and popular

games in the App Store."

– Unknown author, http://appadvice.com/
appguides/show/endless-running

Overview
In this chapter, we will learn all about endless runners and about the new 2D parallax
scrolling in Unity.

We will learn how to use the parallax scrolling to create our very own side-scrolling
endless runner, polished up with particle effects:

• Infinite
• An agile ninja
• The ninja character
• Moving obstacles
• Survival
• Parallax scrolling
• Add pizzazz with particle effects
• Timer
• The result
• How to expand the game?

http://appadvice.com/appguides/show/endless-running
http://appadvice.com/appguides/show/endless-running

Game #3 – Endless Runner

[166]

Infinite
Normally, a game follows a standard template with set rules. For instance, as their
very basis, most games usually have a beginning and an end, which is similar to
most other media, such as books, movies, and so on.

Mostly, this is due to the game following a story, however, even games that have no
story still follow these rules as they provide a sense of completion and progression
for the player.

There are even games that take this notion further by adding beats to the story with
a climax and anticlimax providing the player with a sense of pace and allowing them
to experience action-packed, adrenaline-pumping moments followed by slow-paced
moments that allow them to rest.

And even still, there are other games that use foreshadowing moments to build up
tension, which is very common in action, adventure, and horror games. However,
the endless runner genre removes all that and allows players to play for as long as
they would like, provided they survive that.

Since the game never truly ends, the player can enjoy the game over and over again.
In order to create a game that has no beginning and ending, endless runners make
use of random repetition to ensure that the game feels unique each time the player
plays it.

The great advantage of this genre is that it provides an infinite amount of replay
ability. Also, endless runners are far simpler and quicker to create; creating them is
much simpler than creating bespoke levels.

With endless runners, we simply create the basic logic, and then the game will
randomly create a unique experience with each play.

An agile ninja
For our third game, we will create an endless runner game about a ninja that is
avoiding all obstacles using his agile skills of jumping and sliding.

Chapter 8

[167]

The ninja character
Our ninja character needs to be an animated sprite that loops infinitely. The position
of the ninja will remain static as we will move the background and foreground to
give the illusion of movement.

To create our character, we execute the following steps:

1. Add a folder to Assets within the Project Browser named Ninja.
2. Download and unzip the image NinjaSpriteSheet.png from

http://freeartsprites.com/free-art/endless-runner/.
3. Slice the sprite sheet into individual animation sprites.
4. Create a sprite GameObject using the following image:

5. Name the GameObject Ninja.
6. We then go to Add component | Physics 2D | Box Collider 2D.

Running
As we are creating an endless runner, we, of course, need our ninja to run!
To create a run animation, we do the following:

1. Select the ninja from the hierarchy.
2. Go to Window | Animation.
3. Click on Create New Clip.
4. Save it as Run.anim.

http://freeartsprites.com/free-art/endless-runner/

Game #3 – Endless Runner

[168]

5. Drag the following images into the timeline:

6. Set the sample to 10 to speed up the animation so that the ninja is
running quickly.

Jump and Slide
Our ninja needs to be agile, and he, therefore, needs to be able to jump over
and slide under any obstacle in his way.

To create his jump animation, we do the following:

1. Select the ninja from the hierarchy.
2. Go to Window | Animation.
3. Click on Create New Clip.
4. Save it as Jump.anim.
5. Drag the following images into the time frame:

6. Set the sample to 5 to slow down the jump animation.

Chapter 8

[169]

To ensure that the ninja is not jumping on the same spot, we need to increase his
height while he jumps. To achieve this, we go to Add Curve | Transform | Position
and increase the y position by 1 unit on each frame for the first three frames. The
following table will help us to get a clearer picture of this:

Frame Position.y
0:0 -3
0:1 -2
0:2 -1
0:3 -2
0:4 -3
1:0 -3

To create this slide animation we do the following:

1. Select the ninja from the hierarchy.
2. Go to Window | Animation.
3. Click on Create New Clip.
4. Save it as Slide.anim.
5. Drag the following image into the time frame:

6. We can leave the sample at the default 60 as we are only using one key
frame for the slide animation.

Game #3 – Endless Runner

[170]

Add Animator parameters
We now need to add the Animator parameters by doing the following:

1. Go to Window | Animator.
2. We add the following Boolean parameters to the Parameters box within

the Animator View by clicking on the + sign, selecting Bool, and then
naming them as follows:

 ° jump

 ° slide

Ensure that both parameters are unchecked as they need to start as false by
default, since the character will neither be jumping nor sliding but instead
running by default.

We will also add the run parameter in a similar way.

Animator states and transitions
Before we can detect a jump or slide in the script and then output the corresponding
animation, we first need to set the states and order the transitions between the multiple
animations by using the Animator. To do this, we can execute the following steps:

1. We assign the Animator component to the ninja GameObject within
the Inspector. We generally do this by going to Add Component |
Miscellaneous | Animator.

2. In the Inspector, within the Animator component, we set our controller.
Click on Controller and select Ninja.

3. We now select the Animator View by going to Window | Animator.

Chapter 8

[171]

4. In the Animator View, order the animation states that we created by
right-clicking and adding transitions with directions that match the
following screenshot:

Ensure that run is set as default and is orange; if not, then right-click on it, and select
Set As Default. We click on each transition individually and check the Inspector.

At the bottom of the Inspector, we set the condition to match the direction the
transition arrow is pointing at, with the name of the corresponding parameter.
The following are the conditions:

• If the arrow is going from jump and pointing towards slide, then we
select the slide parameter

• Similarly, if the transition is going from run to slide, then we select the
slide parameter

• However, if the transition is going from slide to run, then we select the
run parameter

Game #3 – Endless Runner

[172]

The following screenshot displays the location of the condition within the Inspector:

Movement controls
We are going to set up the movement controls that enable us to move the Ninja
character. Now that we have set up the movement animations, we need to detect
input in order to trigger each animation.

For our endless runner, we only need a jump control and a slide control.

We will use the W key to jump and the S key to slide.

Chapter 8

[173]

To use these controls, we need to do the following:

1. Create a script and call it Ninja.js.
2. Assign the script to the ninja GameObject by going to Add component |

New Script.

Within the script, we add the pieces of code following the information boxes:

This is used to ensure strict typing—if you use the same variable for
different data types, then an error will be thrown when building the
script. This prevents bugs from occurring. Have a look at the next
line of code.

#pragma strict

Declare a variable to store the Animator component attached to the
ninja GameObject. Have a look at the next line of code.

var animator: Animator;

At the start of our game, we get the Animator component attached
to our ninja GameObject and assign it to our animator variable
that we declared, so that we can access the parameters within
the Animator.

function Start()
{
animator = GetComponent("Animator");
}

We call our MoveCharacter function within FixedUpdate instead
of Update as we are using a rigid body—when using the Physics
engine, we need to ensure that the updates occur in sync with
the Physics engine as using Update could cause inconsistencies
depending on the frame rate of the game. Also, the Physics engine
updates rigid bodies at a fixed rate per second, whereas the rendering
engine updates as many times as possible per second (or is limited to
monitor the refresh rate). Have a look at the next code snippet.

Game #3 – Endless Runner

[174]

function FixedUpdate ()
{
 MoveCharacter();
}

The function to move the ninja is given next.

function MoveCharacter()
{

Detect whether the input key from the keyboard is W. Next,
you will see how this can be done.

if (Input.GetKey(KeyCode.W))
{

If the W key is pressed, then we call the animator function and
set the jump parameter of the Animator's bool function to true
in order to trigger the jump transition so that the run animation or
slide animation transitions to the jump animation. This can be done
by adding the next code snippet.

 animator.SetBool("jump", true);
}
else
{

If the W key is not pressed and, therefore, false, then the ninja
should not jump, and we set the jump parameter of the Animator's
bool function to false. Have a look at the following line of code.

animator.SetBool("jump", false);
}

Detect whether the input key from the keyboard is S. Have a look
at the next line of code.

if (Input.GetKey(KeyCode.S))
{

Chapter 8

[175]

If true, then we call the animator function and set the slide
parameter of the Animator's bool function to true to trigger the jump
transition so that the run animation or jump animation transitions to
the slide animation. Have a look at the next code snippet.

 animator.SetBool("slide", true);
}
else
{

If the S key is not pressed and, therefore, false, then the ninja should
not slide, and we set the slide parameter of the Animator's bool
function to false. Have a look at the next code snippet.

 animator.SetBool("slide", false);
 }
}

Randomly repeating obstacles
We are going to create obstacles for the ninja to avoid. These obstacles need
to repeat until the player dies, and they need to spawn randomly to provide
challenges, variety, and replay ability.

Since the player is static, the obstacles need to move towards the player.
To create our obstacle, we can execute the following steps:

1. Add a folder to Assets within the Project Browser named Obstacle.
2. Download and unzip the image Boulder.png from

http://freeartsprites.com/free-art/endless-runner/.
3. Create a sprite GameObject using the following image:

http://freeartsprites.com/free-art/endless-runner/

Game #3 – Endless Runner

[176]

4. Position the boulder obstacle as in the following screenshot:

5. Name the GameObject Obstacle.
6. Go to Add component | Physics 2D | Box2D Collider.
7. Go to Add component | Physics 2D | Rigidbody 2D.
8. Set Gravity to 0.
9. Create a script called Obstacle.js, and assign it to the Obstacle GameObject.

Add the following to the script:

Declare our obstacle variable and set its data type to Rigidbody2D.
This is shown in the next line of code.

var obstacle:Rigidbody2D;

Declare a decimal variable and assign the 3 seconds speed that the
ninja will move at. We set this to -3 since we want it to move to the
left-hand side. Have a look at the next line of code.

var speed:float = -3.0;

Declare our ninja object of the type GameObject. You will see how
this is done in the next line of code.

var ninjaObj:GameObject;

We spawn an obstacle every 3 seconds using Unity's Invoke method.
The first parameter we pass is the name of the function that spawns
an obstacle and the second parameter is the delay in terms of seconds
between each spawn. Have a look at the next line of code.

Chapter 8

[177]

Invoke("SpawnObstacle", 3);

The function to spawn an obstacle is given next.

function SpawnObstacle()
{

Declare a variable of an instance of our Rigidbody2D GameObject.

var obstacleInstance:Rigidbody2D;

Spawn an instance of the obstacle GameObject using Unity's
Instantiate function and assign it to our variable. The first
parameter is the GameObject we want to make an instance of,
namely, the obstacle.
The second parameter is the position of the newly spawned obstacle,
whereby we use a vector with three coordinates. The first coordinate
x is set to 10; the second coordinate y uses a random range function
to provide random height; and the final z position we leave at 0 as
this is a 2D game.
The final parameter is the rotation/orientation of the newly spawned
obstacle and thus we use a quaternion. Within it, we create a new 3D
vector because the variable is uninitialized.

obstacleInstance = Instantiate(obstacle, Vector3(10,Random.Range(
 -4, 0),0), Quaternion.Euler(new Vector3(0,0,0)));

We give all new instances identical names so that we can simply
identify all of them; otherwise, we would have to check each
individually. Have a look at the next line of code.

obstacleInstance.name = "Obstacle(Clone)";

Set the obstacle instance's velocity in the x axis to the speed
variable of -3.0 that we declared at the start of the script. We use
a vector with two coordinates x and y for each position update.
Have a look at the next line of code.

obstacleInstance.velocity = new Vector2(speed, 0);
}

Game #3 – Endless Runner

[178]

Make sure to assign the obstacle Rigidbody to the obstacle variable
under the script component in the Inspector.

Survival
In an endless runner, the character usually only has one life, and as such, we need to
check our game. Check when the ninja collides with an obstacle, because when that
happens, he dies and the game ends.

A Unity function to detect whether the ninja has collided with an
obstacle is declared next. We do not need to call the function since
it is part of the Unity API and gets called automatically by Unity's
Physics engine.

function OnCollisionEnter2D(other:Collision2D)
{

If the name of the object that has collided with the obstacle is
Ninja, then end the game by stopping the game using Time.
timeScale = 0;. And then, destroy the obstacle. Have a look at
the next code snippet.

 if(other.gameObject.name=="Ninja")
 {
 Time.timeScale = 0;
 Destroy(gameObject);
 }
}

Parallax scrolling
As we are creating an endless runner, we need our environment to seamlessly
repeat infinitely. There are various ways to do this; however, with the new Unity 2D
animation, we can simply use the 2D animation to accomplish this by animating the
background moving.

Chapter 8

[179]

To do so, we need to do the following:

1. Add a folder named Background to Assets within the Project Browser.
2. Download and unzip the desert_BG.png image from

http://freeartsprites.com/free-art/endless-runner/.
3. Create a sprite GameObject using the following image:

4. Make a duplicate of the image by pressing Crtl + D, and position it on the
right-hand side so that they are seamless.

5. Change the camera aspect ratio to 16:9.
6. Ensure that the left-hand side desert_BG object fits perfectly within the

camera view.
7. Drag the right-hand side desert_BG object in the hierarchy onto the

left-hand side desert_BG object so that the left-hand side object is
the parent.

8. Now, select the left-hand side object, and open the Animation View:
9. Go to Window | Animation.
10. In the Animation View, create a new clip. Name it ParallaxScrolling.anim.
11. Go to Add Curve | Transform | Position. Set the sample to 2.

http://freeartsprites.com/free-art/endless-runner/

Game #3 – Endless Runner

[180]

12. Add a key on the very first frame of the timeline 0:0 and position the
background relative to the camera, as shown in the following screenshot:

13. Now, add one more key on 5:0, and move the left-hand side desert_BG
object so that the right-hand side desert_BG object fits the scene perfectly,
as shown in the following screenshot:

Add pizzazz with particle effects
Let's add some cool effects by simply adding dust to emphasize that the ninja
is running and thus add more polish, realism, and immersion to our game.

To create our particle effect, we do the following:

1. Go to GameObject | Create Other | Particle System.
2. Position it by the ninja's feet.
3. Rotate it so that it faces the left-hand side since the dust will blow

behind the ninja's feet. The following is the position of the ninja:
X: 5
Y: 270
Z: 90

Chapter 8

[181]

We will change the color so that it appears as sandy dust from the ground, as follows:

1. Select the particle system in the hierarchy.
2. Then, within the Inspector, click on the Particle System heading to open it.

Now, click on Start Color, and change it to a light brown, as shown in the
following screenshot:

Displaying the timer
Commonly, in endless runners, other than distance and score, time is the main game
condition and objective. Thus, we will display the time that the ninja has survived in
a user interface at the top-left corner of the game.

Attach the following script to the end of the Obstacle.js script:

Call the OnGUI function provided by Unity to create the GUI objects.
The function is given next.

function OnGUI()
{

Game #3 – Endless Runner

[182]

We use the GUI.box function to create the Timer GUI for our game
using a rectangle. The first parameter we pass is the rectangle. We
create the rectangle using four parameters within the rectangle
function with the starting x and y coordinates for the top-left corner
of the rectangle followed by the ending x and y coordinates at the
bottom-right corner of the rectangle.
The next parameter we pass to the GUI.Box function is the Time:
string we would like to display within our box, and we add the time
value to our string so that it is also displayed.
Time.time returns the time in seconds since the game started.
Have a look at the next line of code.

 GUI.Box (Rect (10,10,100,30), "Time: "+Time.time);
}

As with any Unity function, we can get further information from the Unity Scripting
Reference on the official Unity site. We simply select the language that we are using
from the drop-down menu, type in the Unity function that we are using, and do
a search.

The following screenshot is information from the Unity Scripting Reference for the
Gui.Box function we have just used:

Chapter 8

[183]

The result
We can now press play and test the agile ninja, our endless runner game. We should
see the background scrolling, the dust particles emitting from behind the ninja's feet,
and an obstacle randomly spawning repeatedly. To avoid the obstacles, we need to
time the ninja's jump to go over obstacles and his slide to go under the obstacles.

We need to hold down the W key to perform a full jump, and likewise, we hold
down the S key for as long as we want to slide.

It should look like what is shown in the following screenshot:

How to expand the game?
There is always room to expand a game. Try now to add more conditions or
why not change the timer to display total distance. Add more varied obstacles
or different shapes, sizes, and speeds. Add more varied effects and a start screen
and a game-over screen.

We can always add more and more. What one has to keep in mind is not to overly
complicate the game such that players get confused or frustrated. Also, time and
resources can be limited, and the more you add, the more the platform will need
to handle, and the more the bugs that can be introduced. The more we add, the
more the game's release will be delayed, and if we never stop adding more content,
mechanics, and features, our game may never ship!

This is why it is very important when first designing our game to ensure that we
know what its main pillars are; otherwise, we could get ourselves into a situation
that is known in the professional gaming industry as feature creep, whereby one
keeps adding more and more.

Game #3 – Endless Runner

[184]

Summary
In this chapter, we learned about the highly popular and successful endless
runner genre of games and how to create our own endless runner using
Unity's new parallax scrolling. We then polished it up with fanciful effects.

In the next chapter, we will learn about the new Box 2D Physics in Unity and
how to use it to create a physics game similar to Angry Birds that simulates
real-world physics.

Game #4 – Physics Fun
"All reality is a game.

Physics at its most fundamental, the very fabric of our Universe, results directly

from the interaction of certain fairly simple rules, and chance; the same description
may be applied to the best, most elegant, and both intellectually and aesthetically

satisfying games."

– Iain Banks, http://www.goodreads.com/quotes/59786-all-
reality-is-a-game-physics-at-its-most-fundamental

Overview
In this chapter, you will learn about the new 2D physics in Unity, including Box 2D
physics and how to use it to create a physics game that simulates real-world physics,
similar to Angry Birds.

The following list of topics will be covered in this chapter:

• The basics of physics
• Physics 2D
• Steps to create bodies
• What is Box2D?
• Let's simulate the world

http://www.goodreads.com/quotes/59786-all-reality-is-a-game-physics-at-its-most-fundamental
http://www.goodreads.com/quotes/59786-all-reality-is-a-game-physics-at-its-most-fundamental

Game #4 – Physics Fun

[186]

The basics of physics
In order to make our games more realistic and therefore simulate real life,
we make use of physics. However, to make use of it within our games, we first
need to understand the basics of physics.

Just as a game needs rules in order to function, so too does the world around us.
The natural world is governed by rules. The science that explains how the world is
governed by these rules using measurable data is known as natural science. Physics
is a branch of natural science that explains matter and the motion of matter through
time and space.

Physics found in the real world
Physics covers an extremely vast range of concepts, and as such we will only look
at the relevant basic quantities that provide the foundations of physics. The
following are the basic quantities:

• Matter: Just as matter in the world is everything around us that is made up
of atoms and molecules, in relation to games, the objects in our game are the
matter in the game world.

• Time: We use time to set intervals on an object's movement or when we
want events to be triggered, for example, when spawning an object.

• Length: This is a quantitative measurement of distance.
• Vectors: This is a quantity that has both direction and magnitude. A vector

has x, y, and z coordinate values.
We have been using vectors to position and move our objects.

• Space: This is an unoccupied area around us, and in the case of the game,
our scene would be space.

• Mass: This is the amount of matter that an object is made up of.
• Velocity: This is the speed that something is moving at in a certain direction.
• Acceleration: This is the rate at which velocity changes at any given time.
• Force: This is the energy that results in movement.
• Rigid body: This is a solid body whereby deformation is neglected,

so no matter how much force acts upon a rigid body, its form remains
constantly rigid.

Chapter 9

[187]

• Drag: This is the air or fluid resistance acting to slow down the velocity
of an object.

• Angular drag: This is the same as drag, but it refers to the rotation of the
resistance acting to slow down the rotational speed of an object.

• Collision: This occurs when multiple objects/bodies exert forces on each
other for a certain amount of time.

• Inertia: This is the resistance of an object to move due to its mass. It is the
desire for an object to stay moving at its current velocity, for instance, if
moving to the left-hand side, keep moving to the left-hand side, or if at rest,
keep staying at rest.

• Momentum: This is the product of the mass and velocity of a moving
object/body.

• Damping: This is the resistance upon oscillations (to and fro motions like a
spring moving). For instance, the higher the damping, the quicker a spring
moving up and down will come to a stop, whereas the lower the damping,
the longer it will take for a spring moving up and down to come to rest.

• Gravity: This is an object/body's force of attraction towards the center of
the earth.

• Friction: This is the resistance that an object/body faces when moving over
another object/body while in contact.

Physical quantities specific to physics engines (not in the real world) are as follows:

• Kinematic: This is the motion of an object/body without taking mass or
forces into account.

• Static: This is the state of a non-moving object/body.
• Interpolate: This creates smoother movement by calculating the key data

points between the start and end of the movement.

Physics 2D
Those of us that are already familiar with Unity are aware of the original Physics
component. However, this component only works for 3D. There is now a new
component specifically for 2D called Physics 2D. The Physics 2D Manager has
the global settings for Physics 2D.

Game #4 – Physics Fun

[188]

To access it, we do the following:

1. Go to Edit | Project Settings | Physics 2D. We would see the Physics 2D
Manager as shown in the following screenshot:

The Physics 2D Manager settings are as follows:

• Gravity: We can set the global gravity that will affect all objects in our game.
X is for horizontal gravity along the x axis and Y is for vertical gravity along
the y axis.

• Default Material: This is an assigned Physics 2D Material. By default, None
is assigned.

• Velocity Iterations: This is the number of iterations by the physics engine
to calculate the changes in velocity of an object/body. The higher this value,
the more accurate it is, but it is more expensive from the CPU's standpoint.

• Position Iterations: This is the number of iterations by the physics engine
to calculate the changes in position of an object/body. The higher this value,
the more accurate it is, but it is more expensive from the CPU's standpoint.

• Raycast Hit Trigger: If this option is ticked and therefore enabled, then
whenever a collider is set as a trigger, a hit will be returned as true when
it is hit by a raycast. If disabled, it will return false.

Chapter 9

[189]

• Layer Collision Matrix: This sets which layers can interact with each other.
By default, they are all enabled, so objects on any layer can collide with
objects on any other layer.

A Physics 2D Material sets the friction and bounciness that occurs when multiple
physics objects/bodies collide, as seen in the following screenshot:

To create a Physics 2D Material, go to Assets | Create | Physics Material 2D.

What is Box2D?
The Physics 2D component makes use of Box2D. Box2D is a free, open source
physics engine specifically designed for 2D by Erin Catto. It has been used in many
successful 2D games, and is most widely known in the hit game Angry Birds.

To make use of the Physics 2D component, we go to Add Component | Physics 2D.

Game #4 – Physics Fun

[190]

There are three collective types of Physics 2D components available:

• Rigidbodies
• Colliders
• Joints

The following screenshot displays them:

The following screenshot shows a collider:

Colliders are shapes that the physics engine will use to determine collisions between
the object and other objects. Within the settings, we can specify whether a collider
uses a Physics 2D Material, whether this behave as a trigger or a collider, their size,
and their offset.

Chapter 9

[191]

The following screenshot shows a joint:

Joints join multiple objects together, for instance, a wall and a door, or the floor and
a trapdoor, or even the arms of a robot. We can specify whether the joined objects
can collide with each other, the object to join to, the anchor points, and the distance
by which to separate the connected objects.

Steps to create bodies
The Rigidbody 2D component sets an object/body to be affected by physics.
To create a Rigidbody, we can follow the same steps as our previous games
by going to Add Component | Physics 2D | Rigidbody 2D.

The following screenshot shows the result:

Game #4 – Physics Fun

[192]

We will go through all the Rigidbody settings. These are described as follows:

• Mass: This refers to the mass of the object/body
• Linear Drag: This drag affects the movement in position
• Angular Drag: This drag affects the rotation of movement
• Gravity Scale: This is the amount of gravity that affects the

object/body locally
• Fixed Angle: If this is enabled, then the Rigidbody is able to rotate

when it's affected by a force
• Is Kinematic: This sets whether or not the Rigidbody is kinematic for

instances where we want to manually animate the rigid body's position
• Interpolate: The interpolation settings between the physics engine's

updates (when the physics calculations are updated)

Physics engines always have to run at a fixed frame rate regardless
of the graphics frame rate. As these two frame rates generally don't
line up, to render a game object with a rigid body, the renderer
must interpolate or extrapolate based on two known times/
locations from the physics engine.

The following are the options under Interpolate:

 ° None: By default, Interpolate is set to none as it is only required
when the movement of the Rigidbody is not smooth

 ° Interpolate: The object's movement is smoothed by taking into
account the object's position from the previous frames

 ° Extrapolate: The object's movement is smoothed by estimating
the object's position in the next frame

The following screenshot displays all the options:

• Sleeping Mode: These settings are used to save processor time when
the Rigidbody sleeps (rests).

Chapter 9

[193]

The following are the options under Sleeping Mode:

 ° Never Sleep: This option is used to ensure the object never sleeps.
 ° Start Awake: When this option is used, the object is initially set to

be awake and can then be set to sleep.
 ° Start Asleep: When this option is used, the object is initially set

to sleep; however, it can be awoken by collisions.

The following screenshot displays all the options:

• Collision Detection: This consists of settings to detect collisions between
the Rigidbody and other objects/bodies. The following are the options
under this:

 ° Discrete: A collision is detected if the object's collider collides with
another collider during a physics update.

 ° Continuous: Each physics update will perform extra work to make
sure collisions are not missed. This is an important setting to use if
we have very fast-moving rigid bodies. Fast-moving rigid bodies
can miss colliding with each other if we use only the Discrete mode,
but will not miss each other if we use the Continuous mode.

The following screenshot displays all the options:

Game #4 – Physics Fun

[194]

Let's simulate the world
Now that we have a better understanding of the basics of physics and we know
about the new Physics 2D in Unity as well as Box2D, we are ready to make use
of all these faculties to create our very own physics game.

We will create a very simple physics game similar to Angry Birds. We will have
a cannon that shoots out cannonballs.

We can shoot out cannonballs by pressing the Space bar, and we can control where
the ball lands by increasing or decreasing the power of the cannonball using the W
and S keys.

The aim of the game is to shoot the crates and planks in the scene. We won't need to
set up animations since the physics will take care of all the movements in the game.

The environment
The first thing we will do is create our scene with the background, foreground,
and props that populate our environment.

Creating the scene
To create the scene, we do the following:

1. To create a new scene, go to File | New Scene.
2. Name it Scene and make sure you save it.
3. Within the Project Browser, under Assets, create a folder and name it Scenes.
4. Move the scene into the folder.

Creating the background
To create our background, we do the following:

1. Under Assets, create a folder and name it Background.
2. Add PhysicsBG.png as a sprite into the folder from the Chapter09_art

bundle folder in the Code&ColoredImages bundle included with the book.

Chapter 9

[195]

3. Create a sprite GameObject using the following image:

4. Rename it to Background in the hierarchy.
5. Position the background so that it fits perfectly in the Camera View.

The foreground
Our environment is also going to need foreground flooring so that all our objects
can be placed in the scene; if we add our objects without a floor, then they will fall
out of the scene.

This would not occur if we used static objects for our game or if we used physics
with zero gravity. However, we are using objects that make use of physics as this
is a physics game and we are simulating the world with the laws of gravity.

To create our foreground, we do the following:

1. Under Assets, create a folder and name it Foreground.
2. Add PhysicsFloor.png as a sprite into the folder, from the Chapter09_art

bundle folder in the Code&ColoredImages bundle included with the book.
3. Create a sprite GameObject using the following image:

Game #4 – Physics Fun

[196]

4. Rename it to Foreground in the hierarchy.
5. Position Foreground so that it fits perfectly in the Camera View at the

very bottom.
6. Go to Add Component | Physics 2D | Box Collider 2D.

This will ensure the objects in our game collide with the ground when they fall.

Adding the props
We will add props in our screen, such as crates and planks, which will provide
the targets for the cannonballs to collide with.

Adding the crate
To add the crate to our scene, we perform the following steps:

1. Under Assets, create a folder and name it Props.
2. Add Crate.png as a sprite into the folder, from the Chapter09_art bundle

folder in the Code&ColoredImages bundle included with the book.
3. Create a sprite GameObject using the following image:

4. Rename it to Crate in the hierarchy.
5. Go to Add Component | Physics 2D | Box Collider 2D.
6. Go to Add Component | Physics 2D | Rigidbody 2D.
7. Create a few duplicates by pressing Ctrl + D. We can position them

as we want.

Chapter 9

[197]

Adding the plank
To add a plank to our scene, we do the following:

1. Click on the Props folder.
2. Add Plank.png as a sprite into the folder from the Chapter09_art bundle

folder in the Code&ColoredImages bundle included with the book.
3. Create a sprite GameObject using the following image:

4. Rename it to Plank in the hierarchy.
5. Create a few duplicates.

We can position them however we want.

6. Go to Add Component | Physics 2D | Box Collider 2D.
7. Go to Add Component | Physics 2D | Rigidbody 2D.

Shooting the cannonballs
We need a cannon that will shoot out cannonballs. To create our cannon, we need
to do the following:

1. Add a folder to Assets within the Project Browser, and name it Sprites.
2. Add the Cannon.png sprite from the Chapter09_art bundle folder in the

Code&ColoredImages bundle included with the book.
3. Create a sprite GameObject using the following image:

Game #4 – Physics Fun

[198]

4. Name the GameObject Cannon.
5. Go to Add Component | New Script and name it Cannon.js.
6. Assign the script to the cannon.
7. In the Project Browser, add a folder named Scripts and move Cannon.js

into it.
8. Add the following code to the script:

The first line of code is used to ensure strict typing—if you use the same
variable for different data types then an error will be thrown when
building the script.
This prevents bugs from occurring.

#pragma strict

Declare our cannonball variable, and set its data type to
Rigidbody2D as shown in the next line of code.

var cannonball:Rigidbody2D;

Declare our power variable, set it to a decimal type, and assign it an
initial default value of 30.0 that it will start with.
We may need to adjust this value depending on our scene. Have a look
at the next line of code.

var power:float = 30.0;

Call the OnGUI function provided by Unity to create GUI objects.

function OnGUI()
{

Chapter 9

[199]

We use the GUI.box function to create the Power GUI for
our game using a rectangle. The first parameter we pass is
the rectangle:
We create the rectangle using four parameters within the rectangle
function with the starting (x, y) coordinates for the top-left corner
of the rectangle followed by the ending bottom-right corner (x, y)
coordinates of the rectangle.
The next parameter we pass to the GUI.Box function is the
"Power:" string we would like to display as output feedback
within our box, and we add the power value to our string so that it
is also displayed.

 GUI.Box (Rect (10,10,100,30), "Power: "+power);
}

We call our Cannonballs function within FixedUpdate instead
of Update as we are using a Rigidbody. When using physics, we
need to ensure that the updates occur in sync with the physics
engine as using Update could cause inconsistencies depending on
the frame rate of the game.

function FixedUpdate()
{

 Cannonballs();
}

function Cannonballs()
{

Detect whether the input key from keyboard is W.

 if (Input.GetKey(KeyCode.W))
 {

Game #4 – Physics Fun

[200]

We want to limit the power between 40 and 20 because if the
power is too low, then the ball will not be able to blast out of
the cannon, and if the power is too high, then the ball will go
off screen.
Here, we limit the upper boundary of 40, so we only increase
the power incrementally by 1 when pressing the W key if the
power is less than or equal to 39. This is shown in the next
code snippet.

 if (power <= 39)
 {

 power = power + 1;
 }
 }

Detect whether the input key from the keyboard is S. This can
be done as shown in the next line of code.

 if (Input.GetKey(KeyCode.S))
 {

Here, we limit the lower boundary to 20, so we only decrease the
power incrementally by 1 when pressing the S key if the power
is more than or equal to 21. This can be done as shown in the
next code snippet.

 if (power >= 21)
 {

 power = power - 1;
 }
 }

Detect whether the input key from the keyboard is the Space bar,
and if it is, then we call the function that spawns cannonballs.
This is shown in the next line of code.

Chapter 9

[201]

 if (Input.GetKeyDown("space"))
 {

 SpawnCannonballs();
 }

}

The function to spawn cannonballs from the cannon is shown
next.

function SpawnCannonballs()
{

To spawn cannonballs from the cannon when pressing Space bar
in the game, we create an instance of our cannonball GameObject
in the scene.
As our cannonball GameObject that we assign to our instance is a
Rigidbody 2D (we have done so to abide by the laws of physics),
we use the Rigidbody 2D data type.

var cannonballInstance:Rigidbody2D;

We use Unity's Instantiate() function to create an instance
of the cannonball Rigidbody 2D GameObject in our scene, and
assign it to our cannonballInstance variable.
The first parameter is the cannonball GameObject, the second
parameter is the position we want the instance to spawn, in this
case, the xyz position of our cannon, and the third parameter is
the rotation of the instance that we spawn.

 cannonballInstance = Instantiate(cannonball, Vector3(
 -84,-40,72), Quaternion.Euler(new Vector3(0,0,0)));

We need to make sure that we either position our cannon at the
preceding coordinates (-84,-40,72) or, if our coordinates are
different, then use the x, y, z positions of our cannon's position.
We rotate the cannonball instance's z rotation so that it looks
right when it spawns and shoots out at the correct angle from
the cannon. The z axis is the axis that points out from the screen
towards you.

 cannonballInstance.transform.Rotate(0,0,54);

Game #4 – Physics Fun

[202]

As pretty much all the physics has been simplified and is taken care
for us with the Physics 2D component and the Box2D engine, we
need only set the velocity of the cannonballInstance variable.
We want the ball to travel up and to the right-hand side equally, and
then with the cannonball's mass and the gravity pulling it down, we
get the ball moving at a curve. This is shown in the next line of code.

 cannonballInstance.velocity = new Vector2(power,power);
}

9. Build the script.

Creating the cannonballs
Now what fun is a cannon without any cannonballs? We now need to create
the cannonballs that will shoot out of our cannon.

To create our cannonball, we need to do the following:

1. Within the Sprites folder, add the Cannonball.png sprite from the
Chapter09_art bundle folder in the Code&ColoredImages bundle
included with the book.

2. Create a sprite GameObject using the following image:

3. Name the GameObject Cannonball.
4. Go to Add Component | Physics 2D | Circle Collider 2D.
5. Go to Add Component | Physics 2D | Rigidbody 2D.

Chapter 9

[203]

6. Select the cannon in the hierarchy, and within the cannon script in the
Inspector, add the Cannonball Rigidbody 2D to the Cannonball variable.
We need to make sure that all the GameObjects in the scene are the same z
distance from the camera as shown in the following screenshot:

The final result
The final layout for the Project Browser should look like the following screenshot:

Game #4 – Physics Fun

[204]

The final hierarchy should look like the following screenshot:

We can now try out our game. When we push play, we should see the following in
the Game View:

The following zoomed in screenshot displays the power GUI output feedback:

This value updates in real time when we press the W and S keys.

Chapter 9

[205]

How do we extend it?
Using the collision script that we are familiar with, having used it in the prior games,
try adding collectible objects among the crates or even destructible crates.

The cannonball can also be set up so that its rotation is controlled by the player.
Try adding more physical quantities, such as acceleration and deceleration,
more objectives, GUI, and feedback to the game.

Summary
In this chapter, you learned about the basics of physics and how to use physics in
our own game using Unity's new Physics 2D, including the Box2D physics with
bodies to simulate the real world.

In the final chapter, you will learn about audio, feedback, and deploying our game.
You will put everything you have learned throughout the book into practice to
create a game similar to Doodle Jump.

You will then be guided on your onward journey in 2D game development with
a selection of useful resources.

You Are Ready!
"If you have a positive attitude and constantly strive to give your best effort,

eventually you will overcome your immediate problems and find you are ready
for greater challenges."

– Pat Riley

http://www.brainyquote.com/quotes/quotes/p/
patriley147924.html

Overview
In this final chapter, we will learn about audio, feedback, and deploying our game.
We will combine everything that we have learned throughout the book to create
a game similar to Doodle Jump. We will then be guided on our onward journey
in 2D game development with a selection of useful resources.

Here's the list of topics that will be covered in the chapter:

• Audio
• Music
• Sound effects
• Saving and loading
• Triggers
• Cameras
• Multiplayer
• Putting it all together
• Deployment

http://www.brainyquote.com/quotes/quotes/p/patriley147924.html
http://www.brainyquote.com/quotes/quotes/p/patriley147924.html

You Are Ready!

[208]

• Your journey ahead
• A plethora of resources

Audio
To really bring our games to life, we normally need to add audio. Audio includes
the following:

• Music
• Sound effects

Music
Music is not always necessary within a game; however, it can really make a game
feel so much more atmospheric and exciting. Pacing the music successfully, one
can add relaxing moments, foreboding moments, and tense, action-packed,
climactic moments.

It can aid in the storytelling and expressionism or provide a unique form of escapism.

Sound effects
Sound effects add extra depth to a game and can be categorized as follows:

• Ambient sound effects: This comprises the surrounding environmental
sound effects coming from all around.

• GUI sound effects: This comprises interface sound effects, consisting of
clicks, button presses, and the like, providing feedback to the player.

• Feedback sound effects output: This comprises sound effects based on
everything happening within the game, for instance, the character jumping,
or when a player loses or wins in a level. All these sounds provide important
feedback to the player allowing them to understand what is going on within
the game to learn and improve or simply enjoy.

Chapter 10

[209]

Saving and loading
As a player progresses through our games, we need to be able to store their progress
values, whether they are their score, current level, health, ammunition, and so forth:

1. To save this data, we make use of the Unity function PlayerPrefs.
2. To store data, we use PlayerPrefs.Set followed by the data type we are

using to store data. So, PlayerPrefs.SetInt is the function for an integer.
3. We then provide the reference name of the value we are storing followed by

the actual variable that we would like to store. The following line of code is
an example:
PlayerPrefs.SetInt("level", level);

4. To retrieve and, therefore, load the stored data, we make use of
PlayerPrefs.Get followed by the data type that we are loading, then the
reference name, and lastly, we specify a value to assign should no existing
data be saved.
Thus, to load the level data, we use the following line of code:
PlayerPrefs.GetInt("level", 1);

Adding the second parameter is known as exception handling, whereby we
respond to an occurrence because if we do not, then bugs or crashes could
occur as a result.
We simply catch potential errors that could occur and handle them.

5. Since the function is returning the stored value, we must ensure that we
assign it to a variable such as the following:

level = PlayerPrefs.GetInt("level", 1);

Creating a trigger
In all the previous games, we have made use of collisions; however, colliders can be
set up as triggers that are very useful to trigger events. Similar to a collision, should
one GameObject enter the trigger's area, then the script can be set up to trigger
events on a successful overlap.

Thus, to create a trigger, we go to Add Component | Physics 2D | Box Collider 2D
and then tick the Is Trigger setting.

The collider is no longer a collision, but now a trigger. In the script, we now replace
the OnCollisionEnter2D function that we have been using with the trigger
equivalent, that is, the OnTriggerEnter2D function.

You Are Ready!

[210]

Cameras
We have been using the Main Camera that is included by default within a new scene
in Unity. We have kept it stationary since the games that we created had no need for
a moving camera. However, most games will require camera movement, which will
include panning, rotating, zooming, camera cuts, and so forth.

As with any GameObject in our scene, we can move a camera in the same manner
using transform.Translate, as in the following script:

cam.transform.Translate(Vector3.up * camSpeed * Time.deltaTime);

For camera cuts or switching between cameras, we create multiple cameras by
going to GameObject | Create Other | Camera and using the enabled property
of the Camera component cameraName.enabled, as in the following script:

var cam1 : Camera;
var cam2 : Camera;

function Update()
{
if (Input.GetKeyDown("A"))
{
 cam1.enabled = true;
 cam2.enabled = false;
}
if (Input.GetKeyDown("D"))
{
 cam1.enabled = false;
 cam2.enabled = true;
}
}

Multiplayer
To add an online multiplayer would involve using networking, which is an
advanced topic that requires an entire book to clearly explain everything that
is required.

However, we can add a local multiplayer to our games, allowing more than
one person to play together on the same device in the same location.

Chapter 10

[211]

There are multiple ways of doing this:

• Pass and play
• Real time

Pass and play is very simple because the game functions as a single-player
experience. The only difference is that we would need multiple separate profiles
or sets of variables to store each player's data.

Real time is slightly more complex, requiring us to create multiple GameObjects in
the scene to serve as the characters for each player. There is also the separate set of
data for each player and each player's own separate and specific game controls. For
instance, we can use the WASD keys for player 1 and the arrow keys for player 2,
and so on.

Putting it all together
For our final game, we will take what we have learned from previous chapters
and combine it with the concepts that we have just learned in this chapter to create
a game similar to Doodle Jump. We will then see how to deploy our game. The
following is the entire activity:

• We will create a platform game called Space Buddy

• Space Buddy is also the name of our main character, who is an alien
• Our alien, Space Buddy, will be jumping around the galaxy from one space

platform to another trying to reach the top
• As he jumps around space, lava will rise from the bottom
• In this galaxy, gravity exists similar to our planet Earth, and should Space

Buddy miss a platform, he will fall to his death into the lava, and the game
will end

• However, his objective is to reach the UFO beam at the top of the level so
that he can be transported to another galaxy

• Should he reach the beam successfully, then he will complete the first level
successfully and go on to the next level

• Each time Space Buddy jumps, he increases his score by 50 points, and this
score is carried over to the next level

• This game will make use of two levels, although it can be easily extended
to include as many levels as we like

You Are Ready!

[212]

The first scene
To create the first scene, we do the following:

1. To create a new scene, go to File | New Scene.
2. Name it Scene.
3. Within the Project Browser, under Assets, create a folder and name it Scenes.
4. Move the scene into the folder.

The galaxy
To set the scene for our game, we need to add the galaxy background.

To add the background, we will execute the following steps:

1. Add a folder to Assets within the Project Browser and name it Background.
2. Download the image galaxy.png from the following URL:

http://freeartsprites.com/platformer

3. Create a sprite GameObject using the following image:

4. Name the GameObject Background.
5. Position it so that it covers the entire screen.

http://freeartsprites.com/platformer

Chapter 10

[213]

Platforms
We need to add platform props for Space Buddy to jump on so that he can reach the
UFO beam that will be waiting above.

To add a platform, let's execute the following steps:

1. Add a folder to Assets within the Project Browser and name it Props.
2. Download the image platform.png from the following URL:

http://freeartsprites.com/platformer

3. Create a sprite GameObject using the following image:

4. Name the GameObject Platform.
5. Duplicate it three more times to populate the scene.

Triggers
Instead of adding collision to our platform GameObjects as we normally did in the
previous games, we need to make our platform triggers. This is because if we had
them as collisions, then Space Buddy would not be able to pass through them and
jump on them, but instead would collide with some of the platforms above him
when jumping.

Thus, making them triggers instead allows Space Buddy to pass through and jump
on them. To add triggers to the platforms, we execute the following steps:

1. Select a platform.
2. In the Inspector, go to Add Component | Physics 2D | Box Collider 2D.

http://freeartsprites.com/platformer

You Are Ready!

[214]

3. Tick the checkbox next to the Is Trigger setting, as shown in the following
screenshot:

4. Make sure to do this for all the platforms.

The lava
The lava rises every time Space Buddy jumps. The game ends when Space Buddy
falls into it.

To create the lava, let's execute the following steps:

1. Add a folder to Assets within the Project Browser and name it Foreground.
2. Download the image lava.png from the following URL:

http://freeartsprites.com/platformer

3. Create a sprite GameObject using the following image:

4. Name the GameObject Lava.
5. We add a trigger component to the Lava to check when the main character

passes through to trigger the lose script that will destroy the main character.
Go to Add Component | Physics 2D | Box Collider 2D and tick the Is
Trigger setting.

http://freeartsprites.com/platformer

Chapter 10

[215]

UFO beam
The UFO beam is the main objective of each level. To successfully complete a level,
Space Buddy needs to reach the UFO beam.

To create the UFO beam, let's execute the following steps:

1. Add a folder to Assets within the Project Browser and name it Sprites.
2. Download the image UFObeam.png from the following URL:

http://freeartsprites.com/platformer

3. Create a sprite GameObject using the following image:

4. Name the GameObject UFO beam.

Adding audio
For the first time, we will be adding audio to our game. We will add sound effects
for Space Buddy's jumps that will play each time he jumps on a platform as well
as a sound effect when he dies and when he enters the UFO beam successfully,
completing the level.

To add the sound effects, let's execute the following steps:

1. Add a folder to Assets within the Project Browser and name it Audio.
2. Download the audio wave file spin_jump.wav from the following URL:

http://soundbible.com/1898-Spin-Jump.html

http://freeartsprites.com/platformer
http://soundbible.com/1898-Spin-Jump.html

You Are Ready!

[216]

3. Drag the audio file into the Audio folder.
4. If we click on the imported audio asset file, we can select whether it is a 3D

sound (sound manipulated to appear as if it is originating within a specific
point in 3D space) or not, as well as its compression settings and therefore
file size. When creating games for mobile platforms for instance, we need to
keep files compressed and small in size. This does have a minimal effect on
the audio quality. For a few very short sound effects, native (uncompressed)
audio files can be used; they will not need to be decoded during runtime,
thereby reducing runtime processing.

5. We repeat the preceding steps for jingles_NES00.ogg and jingles_NES01.
ogg from SFX Jingles at the following URL:
http://freeartsprites.com/audio

6. The following screenshot displays the audio formats supported by Unity:

The camera
In this game, we want to ensure that Space Buddy is always on screen and that
we can always see slightly ahead and below to assist gameplay. Thus, we will
need to move our camera.

To move our camera, we rename our Main Camera to Camera for simplicity,
and then add all the camera movement behavior in our game script that we
will add to the main character Space Buddy.

http://freeartsprites.com/audio

Chapter 10

[217]

Saving and loading
In this game, we would like to save and load data in our level, which in this case
is the player's score, and we would like to load in a second level. All of this will
be handled via a script.

Space Buddy the alien
We now add the main character in our game, which is the little alien named Space
Buddy. To add the alien, we do the following:

1. Download the alien.png image from the following URL:
http://freeartsprites.com/platformer

2. Move it to the sprites folder.
3. Create a sprite GameObject using the following image:

4. Name the GameObject SpaceBuddy.
5. Go to Add Component | Physics 2D | Rigidbody 2D.
6. Go to Add Component | Physics 2D | Box Collider 2D.
7. Go to Add Component | New Script and name the script SpaceBuddy.js.
8. In the Project Browser, add a folder named Scripts and move SpaceBuddy.

js into it.
9. Add the following code to the script:

http://freeartsprites.com/platformer

You Are Ready!

[218]

The first line of code is used to ensure strict typing—if you use the same
variable for different data types, then an error will be thrown when
building the script.
This prevents bugs related to incorrect data types from occurring. Have
a look at the next line of code.

#pragma strict

Next, we define the vertical velocity of the character's jump as shown
in the next line of code.

var power:float = 20.0;

Next, we define the speed or horizontal velocity that the character
moves at when it moves towards the left-hand side or the right-hand
side. Have a look at the next line of code.

var speed:float = 3.0;

In the next line of code, we define the vertical velocity that the camera
travels at.

var camSpeed:float = 100.0;

In the next line of code, we set the vertical velocity that the lose trigger
travels at.

var lavaSpeed:float = 100.0;

In the next code, we declare the main character as a Rigidbody.

Chapter 10

[219]

var spacebuddy:Rigidbody2D;

In the next line of code, we create a camera GameObject.

var cam:GameObject;

In the next code, we declare the lose trigger GameObject.

var lava:GameObject;

We declare a variable that will store the audio clip of the jump sound
effect that we would like to play in the game.

var jumpclip:AudioClip;

In the next code, we declare a variable that will store the audio clip of
the win sound effect that we would like to play in the game.

var winclip: AudioClip;

Then, in the next code, we declare a variable that will store the audio
clip of the lose sound effect that we would like to play in the game.

var loseclip:AudioClip;

We declare a variable to store the score in the game.

var score : float = 0.0;

You Are Ready!

[220]

We use the Start function when we want to enable a script before any of
the Update functions are called. In this case, we want to use the conditional
if statement to check that the current scene we are in is scene 2.
We use the Unity function Application.LoadLevelName to retrieve
the name of the level that is currently loaded. We use the == operator to
check that it matches with scene 2.
If there is no match, then it means that we are in scene 1 (the first level
of the game) and, therefore, we do not need to play the success audio.
However, when we do load the second scene, there will be a match, and
thus, the success sound effect will play in the second level.
We call the audio now instead of at the end of level 1 because there is no
time as the second level gets loaded instantly as soon as the first level has
been passed. As is always the case, there are many ways of doing it, and
another option would have been to add a delay before loading the next
scene. Have a look at the next code.

function Start()
{
 if (Application.loadedLevelName == "scene2")
 {

To play the win sound effect, we use the AudioSource.
PlayClipAtPoint Unity function. The first parameter that we pass is
the winclip variable that holds the audio clip of the win sound effect,
and then the second parameter we pass is the location from which the
sound plays. Have a look at the next code.

 AudioSource.PlayClipAtPoint(winclip, transform.position);

We only load our saved score from the previous level. If this is the first
level, there will be no match in the preceding if statement and this script
will not get called as we want to start the first level from 0. To load our
score, we use the Unity function PlayerPrefs.GetFloat because our
score is of the float data value. As the first parameter, we pass the same
name that we used when we saved the data for that value, and then
for the second parameter, we use the value that we set, should no pre-
existing data be saved.
It is very important to assign this function to a variable as it returns the
loaded value. Thus, we assign this to our score variable as we have
loaded the saved score from the first level and want to carry it across to
the next level. Have a look at the next code.

Chapter 10

[221]

 score = PlayerPrefs.GetFloat("score",0);
 }
}

For this game, we would like to display the player's score. Using the
existing Unity GUI function that gets called automatically, we create a
rectangle with a size that we specify, consisting of the x and y coordinates
denoting the starting position of the rectangle, followed by the x and y
coordinates denoting the ending position.
We then add the string of text that we would like to display within the
box followed by the + sign and the variable.
The + sign concatenates (joins) the variable into a string so that it can be
displayed as a string as the GUI.Box method can only display string
types. Have a look at the next code snippet.

function OnGUI()
{
 GUI.Box (Rect (10,10,100,30), "Score: "+score);
}

We call our MoveCharacter function within FixedUpdate instead of
Update as we are using a Rigidbody—when using physics, we need to
ensure that the updates occur in sync with the physics engine since using
Update could cause inconsistencies depending on the frame rate of the
game. Have a look at the next line of code.

function FixedUpdate()
{
 MoveCharacter();
}

In the next code snippet, we define a function to move the character.

function MoveCharacter()
{

In the next code, we detect if the input key from the keyboard is A.

 if (Input.GetKey(KeyCode.A))
 {

You Are Ready!

[222]

Move the character to the left-hand side using transform.Translate,
which is the function that moves a GameObject's position based on
direction and distance.
The first parameter passes the direction and the next two parameters,
being speed and time, pass the distance since distance is speed over time.
We use vector3.left, which is the shorthand for a predefined vector
moving to the left-hand side, which is (-1,0,0).
We then multiply by the speed that we want the character to move to the
left-hand side at, and then the amount of time we want the character to be
moving to the left-hand side, which in this case is for as long as the player
is pressing down the A key.
We use Time.deltaTime for this as it makes the movement frame-
independent, allowing the character to move a certain distance per second
instead of per frame because it calculates the seconds that have passed
since the last frame. Have a look at the next line of code.

 transform.Translate(Vector3.left * speed *
 Time.deltaTime);
 }

In the next code, we detect if the input key from the keyboard is D.

 if (Input.GetKey(KeyCode.D))
 {

Move the character to the right-hand side using transform.
Translate, which is the function that moves a GameObject's position
based on direction and distance.
The first parameter passes the direction and the next two parameters,
being the speed and time, pass the distance since distance is speed over
time. We use vector3.right, which is the shorthand for a vector
moving to the right-hand side.
We then multiply by the speed that we want the character to move to
the right-hand side and by the amount of time we want the character to
be moving to the right-hand side, which in this case is for as long as the
player is pressing down the D key.
We use Time.deltaTime for this as it makes the movement frame-
independent, allowing the character to move a certain distance per second
instead of per frame because it calculates the seconds it took to complete
the last frame. Have a look at the next code snippet.

Chapter 10

[223]

 transform.Translate(Vector3.right * speed * Time.
deltaTime);
 }
}

In all our previous games, we made use of collision and the
OnCollisionEnter2D function. However, this time, we are using a
trigger instead, because we don't want the character to collide with the
platforms, but instead pass through them; although, when the character
passes through the platforms, we want the character to jump. Therefore,
we use a trigger to check when the player is on a platform to trigger the
jump, and thus we use the OnTriggerEnter2D function.
For the parameter of the function, we pass the collider of the GameObject
that passes through the trigger to check which GameObject has collided
with the trigger and therefore triggered it. Have a look at the next line
of code.

function OnTriggerEnter2D(other:Collider2D)
{

We use the conditional if statement to check whether the GameObject
other, that was passed through the function as a parameter, is a
platform.
We check the name of the GameObject to check whether its name matches
with the platform GameObject that is named Platform. Have a look at
the next line of code

 if(other.gameObject.name=="Platform")
 {

The player increases their score by jumping. Each jump awards the player
with 50 points. Therefore, since we know that Space Buddy has collided
with the platform because the name of the collider matches, we assign our
score variable the current score added with the 50 points.
We also play the jump sound effect on Space Buddy's collision with a
platform. To play the jump sound effect, we use the AudioSource.
PlayClipAtPoint Unity function.
The first parameter that we pass is the jumpclip variable that holds the
audio clip of the jump sound effect, and then the second parameter we
pass is the location from which the sound plays. Have a look at the next
line of code.

You Are Ready!

[224]

score=score+50.0;
AudioSource.PlayClipAtPoint(jumpclip, transform.position);

Each time that we award the player points to their score, we need to save
the data, because if the game crashes or is interrupted, then we would
lose the score. This way, we keep track of their progress. Also, we need
to save the score to load it in the next level. Have a look at the next line
of code.

 PlayerPrefs.SetFloat("score", score);

If the other GameObject's name is Platform, then that means that the
character has collided with a platform and can jump on it. Thus, we
move (accelerate) the character vertically in the y axis using a 2D vector.
We assign a new velocity to the character in the y axis by passing
the power variable that we declared as the second parameter to the
vector2 function. Have a look at the next line of code.

 spacebuddy.velocity = new Vector2(0,power);

As the character is jumping up, it is only a matter of time until the
character will jump off screen. Therefore, we need to find the camera in
the scene and move it together with the character whenever the character
jumps on a platform so that the character always remains in view.
To do this, we find the camera in the scene using the Find function
and look for a match. Once the camera is found, we assign it to our
cam variable to be used within our function. Have a look at the next
line of code.

 cam = GameObject.Find("Camera");

When the character falls to the bottom, hits the lava, and dies, it is
game over. Thus, we have a trigger that we name lava below the
camera to check that they have fallen and hit the lava. We use the
Find function to find the lava trigger within the scene. Have a
look at the next line of code.

 lava = GameObject.Find("Lava");

We move the camera up together with the character whenever the
character jumps on a platform so that the character always remains
onscreen. Have a look at the next line of code.

Chapter 10

[225]

 cam.transform.Translate(Vector3.up * camSpeed *
 Time.deltaTime);

We move the lava trigger up whenever the character jumps on a
platform and the camera moves up.
If we didn't move the lava trigger up, and if a character fell below the
camera, there is a chance that the character may land on a platform
and not reach the lava trigger's initial position, therefore never ending
the game.
Thus, we raise the lava trigger up together with the character and camera
on a platform jump so that it is always in the correct location (just below
the camera and above any platforms) and cannot be missed. It also adds to
the immersion having the lava rise up. Have a look at the next line of code.

lava.transform.Translate(Vector3.up * lavaSpeed *
 Time.deltaTime);
}

We use the conditional if statement to check whether the GameObject
other, that was passed through the function as a parameter, is the lava
trigger. We check the name of the GameObject to check whether its name
matches with the lava GameObject that is named Lava. Have a look at
the next line of code.

 if(other.gameObject.name=="Lava")
 {

If the other GameObject's name is Lava, then that means that
the character has collided with the lava trigger and thus triggered
it. To play the sound effect for losing, we use the AudioSource.
PlayClipAtPoint Unity function. The first parameter that we pass is
the loseclip variable that holds the audio clip of the lose sound effect,
and then the second parameter we pass is the location from which the
sound plays.
Triggering the lava trigger means that we can stop the game since it is
game over. To stop the game, we use Time.timescale as it sets the
amount of time at which time is passing. Setting it to 0 slows it to a stop.
Have a look at the next code.

 AudioSource.PlayClipAtPoint(loseclip,
 transform.position);
 Time.timeScale = 0;
 }

You Are Ready!

[226]

To successfully complete a level, the player must get Space Buddy safely
into the UFO beam at the very top of the level.
We use the conditional if statement to check whether the GameObject
other, that was passed through the function as a parameter, is the
UFObeam trigger.
We check the name of the GameObject to check whether its name matches
with the UFObeam GameObject that is named UFObeam. Have a look at
the next line of code.

 if(other.gameObject.name=="UFObeam")
 {

If the other GameObject's name is UFObeam instead of Lava, then that
means that the character has collided with the UFObeam trigger, and thus
triggered it.
Triggering the UFObeam trigger means that the player has completed
level 1 successfully, and we can therefore load level 2. To load level 2, we
use the Unity function Application.LoadLevel and pass the name of
the level that we want to load as its parameter. We then check the name of
the GameObject to check whether its name matches with the UFObeam2
GameObject that is named UFObeam2.

Application.LoadLevel("Scene2");
 }

 if(other.gameObject.name=="UFObeam2")
 {

Triggering the UFObeam2 trigger (which we will make later on in the
chapter) means we can play the winning sound effect and stop the game
since the game has been completed successfully. To play the win sound
effect, we use the AudioSource.PlayClipAtPoint Unity function.
The first parameter that we pass is the winclip variable that holds the
audio clip of the win sound effect, and then the second parameter we pass
is the location from which the sound plays.
To stop the game, we use Time.timescale as it sets the amount of time
at which time is passing. Setting it to 0 slows it to a stop. Have a look at
the next line of code.

Chapter 10

[227]

 AudioSource.PlayClipAtPoint(winclip,
 transform.position);
 Time.timeScale = 0;
 }
}

We can now build the script.

Space Buddy script
The following screenshot shows all the variables that we created in our script:

We may need to adjust (decrease) the power field for our level. The higher the
power, the higher the character's jump! Try changing the power until it suits your
needs. Do not be afraid of experimenting since game creation takes a fair amount
of iteration to ensure that we get exactly what we are looking for.

We need to make sure that none of the fields are empty and there is no missing data.

In the Inspector, our Space Buddy script needs to match the preceding screenshot,
and thus if the assets are not already assigned to the correct GameObject, we need
to assign them so that they can be used in the script.

We need to assign assets to the following variables:

• Spacebuddy Rigidbody 2D—to control our character
• Camera—so that we can move it
• Lava—so that we can raise it
• Audio clips—to play them

You Are Ready!

[228]

Positioning
We position the first scene's game objects to match the following screenshot:

The second scene
To learn and practice using multiple levels, we will add a second scene. For the
second scene, let's execute the following steps:

1. Create a new scene and save it as Scene2.
2. We move this scene into the Scenes folder in the Project Browser.
3. We repeat all the preceding steps except that we use the alternative second

scene sprites.
4. We name all the objects the exact same names as in the first scene except for

the UFObeam GameObject, which we name UFObeam2 because it has unique
code associated with it.

5. We position the second scene's GameObjects to match the following
screenshot:

Chapter 10

[229]

The final result
The final layout for the Project Browser should look like the following screenshot:

You Are Ready!

[230]

The final hierarchy for the first scene should look like the following screenshot:

The final hierarchy for the second scene should look like the following screenshot:

We must remember to add the scenes to Build Settings—at least the second one,
or it will throw an error when we reach the UFO beam.

To do this, we must go to File | Build Settings… and click on Add Current.

We then close the window and can now try out our game. When we push play,
we should see the following first level in the Game View:

Chapter 10

[231]

We should then see the following second level in the Game View once we have
successfully completed the first level:

You Are Ready!

[232]

Deployment
It is an amazing feeling to create your very own game, although releasing and
sharing a game to be enjoyed by others can be even more exhilarating. Having
others experience your world and enjoy it is very rewarding.

We will learn how to deploy our games so that we can run them on different
platforms and share them with our family, friends, and the public.

Also, while developing our game, we need to test the game we are creating on
its target platform so that we can test its unique platform-specific features.

To deploy our game, we do the following:

1. Go to File | Build Settings….
2. Make sure you are in the first scene by clicking on the scene twice in the

Project Browser, and then add the current scene in Build Settings.
3. Now, make sure you are in the second scene by clicking on Scene2 twice

in the Project Browser, and then add the current scene in Build Settings.
Make sure that they are both ticked.

4. Select your target platform (in this case, PC). Select whether or not it is for
32-bit or 64-bit and whether it is a release build or development build.

5. A development build is usually slower than the release build and contains
extra features to debug.

6. The Player Settings… button has extra settings, whereby we can add our
own icon and splash an image for our game.

7. We simply click on the Build button, save our game to the location of choice,
and give our game a name (in this case, Space Buddy).

8. We now have our very own PC game executable (the .exe file).
9. When we open it, we can select its settings and even edit the game controls,

giving even greater flexibility.
10. Follow the same steps for all other platforms; however, each will have its

own extra requirements. For instance, for iOS deployment, you will require
a Mac with Xcode, and for Android mobile devices, you will require the
Android SDK.

11. Had we chosen Web Player, we would receive an HTML file that we could
double-click to play within our browser offline. We can then host it on a
website for others to enjoy online.

Chapter 10

[233]

The following screenshot displays the Build Settings screen:

Your journey ahead
Now that we have learned the essential building blocks of 2D game development,
we are ready to create our very own games. The only way to truly learn is to keep
practicing. We need to start simple, create what we are passionate about, and then
as we become better and more confident, we can try out new things and increase
the complexity.

We should not let failure set us back, but instead learn from our mistakes.
Perseverance is the key.

You Are Ready!

[234]

There is always more than one way to do something, and through consistent practice
and research, we will discover which method is better suited to our needs. Games
are constantly evolving, and as such, there is always more to discover. We have
merely scratched the surface and have an incredible journey ahead!

A plethora of resources
As Unity is such a prominent game engine, there is a huge wealth of information
and resources available at our disposal.

Online resources
The following is a list of online resources:

• http://www.google.com: The first and foremost location to search for
information should be on the biggest and most popular search engine.

• http://www.unity3d.com: The next essential location for Unity-related
information is the official Unity site.

• http://unity3d.com/learn: If you are looking to learn more, then this
learn section provides all methods of learning.

• http://unity3d.com/unity/whats-new: To keep up to date with the
latest Unity releases and bug fixes, this is a good resource.

• https://store.unity3d.com: To upgrade your version of Unity,
should you require the extra features (enabling you to compare the
different versions).

• http://forum.unity3d.com: There is a huge, helpful Unity community
of experienced developers. Learn from the best by corresponding
and collaborating with them on the Unity forums. It also provides
networking opportunities.

• http://answers.unity3d.com: For Unity support, the answers section is
invaluable in providing clear answers. You can usually find that a question
you may have has already been asked and answered.

• http://learnunity2d.com: This is a great site that pulls together all 2D
Unity related tutorials, videos, and games.

• http://thegamesvine.com: This is a new and awesome site for all things
game related, learning about game development, game news, reviews, and
purchasing games at bargain deals.

• http://gamesdesigner.net: This is my portfolio website.

http://www.google.com
http://www.unity3d.com
http://unity3d.com/learn
http://unity3d.com/unity/whats-new
https://store.unity3d.com
http://forum.unity3d.com
http://answers.unity3d.com
http://learnunity2d.com
http://thegamesvine.com
http://gamesdesigner.net

Chapter 10

[235]

Offline events
Unite Conference—an annual Unity developer's conference, whereby the Unity
community get together. You can meet the Unity developers as well as find out
about their roadmap ahead. Live practical training in much greater depth is also
provided. You can find these at the following URL:

https://unity3d.com/unite

There are other Unity workshops, user groups, and events that take place in different
countries and cities. If there is none available in your area, then why not start your
very own.

Free resources
Remember to always get the rights and permissions in writing to use resources,
whether publicly available or not, and to check that there is no infringement of
trademarked, patented, or copyrighted work.

Simply referencing or citing a work does not constitute fair use.

The following is a list of sites that offer free resources:

• http://freeartsprites.com: If you are looking for a website that you do
not need to cite and has public-domain, royalty-free sprites to use in your
very own commercial or non-commercial games, then this is an ideal place.
If you wish for sprites that can be used without any worries, then I urge
you to go to the following site that we have used throughout the book.

• http://opengameart.org: This is another site that contains public-domain
art that can be used freely; however, use it with caution since it combines
free art with art that has many other restrictions, so always check what
the conditions are.

• http://www.blender.org: Blender is freely available, open source
3D modeling software that can be used for both commercial and
non-commercial purposes.

• http://www.getpaint.net: Paint.Net is a free 2D graphics creation
and editing software that can be used for any purpose.

• http://www.gimp.org: Gimp is another alternative to Paint.NET.
• http://audacity.sourceforge.net: Audacity is a free, open source,

cross-platform audio recording and editing software.

https://unity3d.com/unite
http://freeartsprites.com
http://opengameart.org
http://www.blender.org
http://www.getpaint.net
http://www.gimp.org
http://audacity.sourceforge.net

You Are Ready!

[236]

Hosting games
This is an incredible indie website that I really like. If you would like to easily make
your PC game available to the public—whether for free or paid—then I recommend
the following website as it also has the extra option to allow people to decide if they
would like to donate to your game:

http://itch.io

Social media
If you would like to catch up with me on Twitter, my Twitter username is as follows:

@Atinev

Summary
In this final chapter, we learned about audio, feedback, and deploying our game. We
have put everything that we have learned throughout the book into creating a game
similar to Doodle Jump. We were then guided on our onward journey in 2D game
development with a selection of useful resources.

http://itch.io

Index
Symbols
2D project

creating 9, 10

A
Accelerate function 138
acceleration 186
accelerometer 107
acid sprite

URL, for downloading 156
agile ninja character, endless runner

animator parameters, adding 170
animator states, setting 170-172
creating 167
jump animation, creating 168, 169
movement controls, setting 172-175
run animation, creating 167, 168
slide animation, creating 169
transitions, ordering 170-172

alien.png image
URL, for downloading 217

alien, Space Buddy
adding 217-226
positioning 228
script, building 227

ambient sound effects 208
angular drag 187
animation clip

creating, in Dopesheet 70, 71
Animation Editor

used, for animating sprite 70
Animation 23

Animator
about 24, 72, 73
used, for controlling Roguelike hero

movement 128, 129
Application Programming Interfaces

(APIs) 88
assembly language

about 77
code representation 77

assets, Project Browser
creating 15
searching 16

Asset Store. See Unity Asset Store
Audacity

URL 235
audio

about 108
adding 208
adding, to Space Buddy 215, 216
music 208
sound effects 208

automatic slicing, sprite sheet
about 56, 57
with Grid option 57, 59

B
background 27
background asset

assigning, to GameObject 34
alternative method, for assigning

to GameObject 38, 39
importing 28, 29
toolbar method, for assigning to

GameObject 35, 36

[238]

background, setting with static image
about 28
background asset, assigning to

GameObject 34
background asset, importing 28, 29
GameObject, setting 39
sprite settings 30

background, setting with tileset
about 28, 40
corner pieces, using 41
grid settings 41
prefab, creating 41
seamless textures, using 41

basic quantities, physics
acceleration 186
angular drag 187
collision 187
damping 187
drag 187
force 186
friction 187
gravity 187
inertia 187
length 186
mass 186
matter 186
momentum 187
rigid body 186
space 186
time 186
vectors 186
velocity 186

binary code. See machine language
binary digits (bits) 76
Blender

URL 235
Boo code

versus C# code 79, 80
versus UnityScript code 79, 80

boolean data type 82
Boulder.png image

URL, for downloading 175
Box2D 189-191
buttons

about 112
creating 112

creating, GUILayout.Button function
used 112, 113

creating, OnGUI function used 112

C
camera

about 107
adding, to Space Buddy 216
using 210

cannonballs, physics game
creating 202, 203

cannon, physics game
creating 197-202

C# code
versus Boo code 79, 80
versus UnityScript code 79, 80

character, hello world program
adding 63-66
controlling 92, 93

class
about 87
accessibility level 88
scope level 88

classic arcade
bathroom environment, creating 148, 149
conditions 158
creating 147
font style, editing 160, 161
game controls, adding 150-152
HUD, adding 159
spawning acid, adding 156, 157
spawning grime, adding 153-156
Spongy 148
Spongy, adding 149, 150
testing 163

ClassicArcade.zip
URL, for downloading 149

code
components 81
need for 76

code editor 89
colliders 190
collision 187
Collision Detection

settings 193

[239]

comments
using 87

components, code
classes 87
comments 87
conditional statement 86
data types 81, 82
functions 83-86
operators 82, 83

components, Physics 2D
colliders 190
joints 190
rigidbodies 190

computer programmer 75
conditional statement

about 86
if...else 86

conditions, classic arcade
lives, adding 158
score, adding 158, 159
time, adding 158, 159

Console View 22
controller vibration 109
coroutines 99

D
damping 187
data

loading 209
saving 209

data types
about 81
boolean 82
float 82
GameObject 82
integer 82
string 82

Debug.Log() function 112
desert_BG.png image

URL, for downloading 179
Dopesheet

about 70
animation clip, creating 70, 71

drag 187
draw call batching 61

DwarfSpriteSheet file
URL, for downloading 136

E
endless runner

about 165
advantage 166
agile ninja character, creating 166
creating, parallax scrolling used 178-180
expanding 183
obstacles, creating 175-177
overview 165, 166
particle effects, creating 180
survival 178
testing 183
timer, displaying 181, 182

enemy, hello world program
destroying, steps 94-98

enemy, Roguelike
animating 138
movement, scripting 138, 139
spawning 136, 137

environment, physics game
background, creating 194, 195
foreground, creating 195, 196
scene, creating 194

external libraries
importing 88

extra Views
about 22
Animation 23
Animator 24
Console 22
Profiler 24
Sprite Editor 23

F
feedback sound effects 208
file formats, sprite 49, 50
Filter Mode, sprite settings

Bilinear 32
Point 32
Trilinear 32

Find() method 139
float data type 82

[240]

font style
editing 160, 161

force 186
foreground

setting 43
Format, Platform Settings

16 bits 33
Compressed 33
Truecolor 33

frames per second (FPS) 71
free resources, Unity 235
friction 187
function

about 83
calling 84
declaring 84
multiple variables, passing to 85
variable, passing to 84
variable, returning from 85

G
galaxy.png image

URL, for downloading 212
game controller 106
game controls

about 114
raycasting 114-117

game development's background 7, 8
GameObject

about 82
background asset, assigning to 34
background color, setting 39
background layer, setting 39
background position, setting 39
creating 19

Game View, Unity Editor interface 14
garbage collection 161
Gimp

URL 235
GPS 107
Graphical User Interface (GUI) 108
graphic design software. See image

editing software
Grassbg.png image

URL 122
gravity 187

grime sprite
URL, for downloading 153

GUI.box function 182, 199
GUILayout.Button function

used, for creating buttons 112, 113
GUI sound effects 208
gyroscope 107

H
heads-up display. See HUD
hello world program

creating 90, 91
hero, Roguelike

animating 123
movement, controlling 128
Walking Down animation 124-126
Walking Left animation 126
Walking Right animation 127
Walking Up animation 127

Hierarchy tab, Unity Editor interface
about 18
GameObjects, creating 19
parenting 18

High Dynamic Range (HDR) 43
high-level languages

about 77
code representation 78

HUD
about 108, 159
adding 159

I
if...else conditional statement 86
image editing software

used, for creating sprite 46, 47
inertia 187
input

about 103
detecting 111
in games 104
types 106, 107
versus output 103

Input.GetAxis() function 111
Input.GetButton() function 111
Input Manager

[241]

about 110
advantages 110
configuring 110, 111

input, types
accelerometer 107
camera 107
game controller 106
GPS 107
gyroscope 107
joystick 107
keyboard 106
microphone 107
motion controller 107
mouse 106
stylus 107
touchscreen 107

Inspector
about 20
components, adding 21
components, removing 21

Instantiate() function 201
integer data type 82
interpolate 187
Interpolate settings

options 192
InvokeRepeating function 138

J
jingles_NES00.ogg

URL, for downloading 216
jingles_NES01.ogg

URL, for downloading 216
joints 190
joystick 107

K
keyboard 106
kinematic 187

L
lava.png image

URL, for downloading 214
length 186
levels, programming languages

about 79

assembly language 77
high-level languages 77
machine language 76

lossless image compression 49

M
machine language

about 76, 77
visual representation 77

Main Camera option
Background parameter 42
Clear Flags parameter 42
Clipping Planes parameter 43
Culling Mask parameter 42
Depth parameter 43
HDR parameter 43
Occlusion Cullling parameter 43
Projection parameter 43
Rendering Path parameter 43
Size parameter 43
Target Texture parameter 43
Viewport Rect parameter 43

manual slicing, sprite sheet
selection area, adding 54, 55
selection area, removing 54, 55
Toolbar controls 55

mass 186
matter 186
microphone 107
mipmaps 32
momentum 187
MonoDevelop

about 89
opening 89, 90

motion controller 107
mouse 106
movement controls

setting, for agile ninja character of endless
runner 172-175

movement, Roguelike enemy
scripting 138, 139

movement, Roguelike hero
controlling, with Animator

component 128, 129
scripting 130-135

multiplayer

[242]

adding 210, 211
pass and play 211
real time 211

multiple variables
passing, to function 85

music 208

N
namespaces 100
NinjaSpriteSheet.png image

URL, for downloading 167
Notepad 89

O
obstacles, endless runner

creating 175-177
offline events, Unity 235
OnGUI function

about 144
used, for creating buttons 112

online resources, Unity 234
operators

about 82
arithmetic operators 83
logical operators 83
relational operators 83

Orb.png sprite
URL, for downloading 141

output
in games 105
types 107
versus input 103

output, types
audio 108
controller vibration 109
visual output 108

P
Packing Tag, sprite settings 31
Paint.NET

about 47
URL, for downloading 47, 235

parallax scrolling
used, for creating endless runner 178-180

parenting 18

particle effects
creating, for endless runner 180

pass and play 211
Photoshop 47
physical quantities, physics

interpolate 187
kinematic 187
static 187

physics
about 186
basic quantities 186
physical quantities 187

Physics 2D
about 187
accessing 188
Box2D 189
components 190

Physics 2D Manager settings
Default Material 188
Gravity 188
Layer Collision Matrix 189
Position Iterations 188
Raycast Hit Trigger 188
Velocity Iterations 188

Physics 2D Material
about 189
creating 189

physics game
cannonballs, creating 202, 203
cannon, creating 197-202
creating 194
environment, creating 194
extending 205
final result 203, 204

Pivot, sprite settings 32
Pixels to Units, sprite settings 31
platform.png image

URL, for downloading 213
Platform Settings, sprite

Format 33
Max Size 33

prefab 41
private functions 88
Profiler 24
programming languages

about 76
levels 76-79

[243]

Project Browser
about 15
assets, creating 15, 16
assets, importing 17
assets, searching 16
favorites, setting 16
final layout 203

props, physics game
adding 196
crate, adding 196
plank, adding 197

public domain art
URL, for downloading 114

public functions 88

R
raster image

versus vector image 48
raycasting 114-117
real time 211
resource management 161-163
resulting environment

foreground, setting 43
Main Camera option 42
setting 41

rigidbodies
about 190
creating 191-193

rigid body 186
Rigidbody 2D

settings 192
Roguelike

about 120
advantages 120
background, adding 122
collisions, detecting 143
creating, Unity used 119
enemy, animating 138
enemy, spawning 136, 137
hero, animating 123
permadeath 144
shooting projectiles, adding 141-143

S
Scene View, Unity Editor interface 14
scripting languages 78

second scene, Space Buddy
adding 228

Sleeping Mode
settings 192

Software Development Kits (SDKs) 88
sound effects

about 208
ambient sound effects 208
feedback sound effects 208
GUI sound effects 208

space 186
Space Buddy

alien, adding 217
audio, adding 215, 216
camera, adding 216
creating 211
data, loading 217
data, saving 217
deploying 232
extending 233, 234
final result 229-231
first scene, creating 212
galaxy, creating 212
lava, creating 214
platform, adding 213
second scene, adding 228
triggers, adding 213
UFO beam, creating 215

spin_jump.wav
URL, for downloading 215

sprite
about 46
animating 69
animating, Animation Editor used 70
creating 46
creating, image editing software

used 46, 47
file formats 49, 50
importing, into Unity 50
raster image, versus vector image 48
sprite sheet 47

Sprite Editor
about 23
used, for slicing sprite sheet 52

sprite image
URL 49

Sprite Mode, sprite settings 31

[244]

sprite packer 62, 63
Sprite Renderer

about 66-68
Color field 68
Material field 68
Order in Layer option 68
Sorting Layer option 68
Sprite field 67

sprite settings
applying 34
Filter Mode 30, 32
Packing Tag 31
Pivot 32
Pixels to Units 31
Platform Settings 30, 33
Sprite Mode 30, 31
Texture Type 30, 31

sprite sheet
about 47
automatic slicing 56, 57
manual slicing 53, 54
slicing 51
slicing, Sprite Editor used 52

Start() function 84, 139
static 187
static image

used, for setting background 28
string data type 82
stylus 107

T
tags

creating 161
texture atlas 61
texture atlasing

about 31, 61
sprite packer 62, 63

Texture Type, sprite settings 30, 31
tileset

about 40
used, for setting background 28

time 186
timer, endless runner

displaying 181, 182
Toolbar, Unity Editor interface 12
touchscreen 107

Transform Gizmo toggles
about 13
Layers drop-down box 13
Layout drop-down menu 13

Transform tools, Unity Editor interface
about 12
Rotate 12
Scale 12
Translate 12

trigger
creating 209

Typing 81

U
UFObeam.png image

URL, for downloading 215
Unity

about 8
downloading 8
free resources 235
games, hosting 236
installing 8
offline events 235
online resources 234
setting up 8, 9
sprite, importing into 50
URL 8
used, for creating Roguelike 119

Unity Asset Store 17
Unity Editor interface

about 11
Game View 14
Hierarchy tab 18
Inspector 20
Project Browser 15
Scene View 14
Toolbar 12
Transform tools 12
Views 11

UnityScript 78
UnityScript code

versus Boo code 79, 80
versus C# code 79, 80

Unity Scripting Reference
about 100-102
URL, for accessing 101

Update() method 84, 139

[245]

V
variable

passing, to function 84
returning, from function 85

vector image
versus raster image 48

vectors 186
velocity 186
visual output 108

W
WizardSpriteSheet.png

URL 123

X
Xara 47

Thank you for buying
Learning Unity 2D Game
Development by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective

MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1. A wide range of topics are covered, ranging
in complexity, offering something for every
Unity 4 game developer.

2. Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements.

3. Book developed with the latest version of
Unity (4.x).

Unity Android Game
Development by Example
Beginner's Guide
ISBN: 978-1-84969-201-4 Paperback: 320 pages

Learn how to create exciting games using Unity 3D
for Android with the help of hands-on examples

1. Enter the increasingly popular mobile market
and create games using Unity 3D and Android.

2. Learn optimization techniques for efficient
mobile games.

3. Clear, step-by-step instructions for creating
a complete mobile game experience.

Please check www.PacktPub.com for information on our titles

Unity Multiplayer Games
ISBN: 978-1-84969-232-8 Paperback: 242 pages

Build engaging, fully functional, multiplayer games
with Unity engine

1. Create a variety of multiplayer games and apps
in the Unity 4 game engine, still maintaining
compatibility with Unity 3.

2. Employ the most popular networking
middleware options for Unity games.

3. Packed with ideas, inspiration, and advice
for your own game design and development.

Practical Game Design with Unity
and Playmaker
ISBN: 978-1-84969-810-8 Paperback: 122 pages

Leverage the power of Unity 3D and Playmaker to
develop a game from scratch

1. Create artificial intelligence for a game using
Playmaker.

2. Learn how to integrate a game with external
APIs (Kongregate).

3. Learn how to quickly develop games in Unity
and Playmaker.

4. A step-by-step game development tutorial
using AI scripting, external APIs, and
Multiplayer implementation.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting to Know Unity
	Overview
	Game development's background
	Introducing Unity
	Setting up Unity
	Creating a new 2D project
	Unity Editor interface
	Toolbar
	Scene View
	Game View

	Project Browser
	Creating assets
	Searching assets
	Setting favorites
	The Unity Asset Store
	Importing assets

	Hierarchy
	Parenting
	Creating GameObjects

	The Inspector
	Adding components

	Extra Views
	Console
	Animation
	Sprite Editor
	Animator
	Profiler

	Summary

	Chapter 2: Setting the Scene
	Overview
	What is a background?
	Two methods to set a background
	Setting a background using a static image
	Importing our asset

	Sprite settings within the Inspector
	Texture Type
	Sprite Mode
	Packing Tag
	Pixels to Units
	Pivot
	Filter Mode
	Platform settings
	Applying our settings

	Assigning our asset to a GameObject
	The toolbar method
	The quick alternative method

	GameObject Inspector settings
	Position background
	Color background
	Layer background

	Setting a background using a tileset
	Seamless textures
	Corner pieces
	The grid settings
	Creating a prefab

	The resulting environment
	Camera settings
	Setting the foreground

	Summary

	Chapter 3: Add Some Character
	Overview
	What is a sprite?
	Creating a sprite
	Image editing software
	Sprite sheet
	Raster versus vector
	File formats

	Importing a sprite
	Slicing sprite sheets
	Sprite Editor
	Manual slicing
	Adding and removing a selection area
	Toolbar controls

	Automatic slicing
	Slicing type – automatic
	Slicing type – grid

	Texture atlasing
	What is a texture atlas?
	Sprite packer

	Adding our character
	Sprite Renderer
	Animating a sprite
	Animation Editor
	Dopesheet 2D animation
	Animator
	Summary

	Chapter 4: Code Control
	Overview
	Why do we need code?
	Programming languages
	Levels of programming languages
	Machine language
	Assembly language
	High-level languages

	Scripting languages
	UnityScript versus C# versus Boo

	Code fundamentals
	Data types
	Operators
	Functions
	Conditional statements
	If...else

	Using comments
	Classes
	Private versus public

	Importing external libraries
	Code editor

	Hello world
	Controlling the character
	Destroying the enemy
	Coroutines
	Namespaces
	Unity Scripting Reference
	Summary

	Chapter 5: What's Your Input?
	Overview
	Input versus output
	Input in games
	Output in games

	Input types
	Output types
	Visual output
	Audio
	Controller vibration

	Unity Input Manager
	Detecting input
	Buttons
	OnGui
	GUILayout.Button

	Game controls
	Raycasting

	Summary

	Chapter 6: Game #1 – Roguelike
	Overview
	What is Roguelike?
	Adding a background
	Animating the hero
	The Walking Down animation
	The Walking Left animation
	The Walking Right animation
	The Walking Up animation

	Movement controls
	Movement Controls Animator
	Movement controls script

	Randomly spawning enemies
	Animating the enemy
	Enemy movement
	Shooting projectiles
	Detecting collisions
	Permadeath
	End game result
	Summary

	Chapter 7: Game #2 – Classic Arcade
	Overview
	Sponge antics
	Our main character – Spongy
	The bathroom
	Adding Spongy
	Moving left and right
	Spawning grime
	Spawning acid

	Game conditions
	Lives
	Score
	Time

	Adding an HUD
	Font style
	Resource management
	The completed game
	Summary

	Chapter 8: Game #3 – Endless Runner
	Overview
	Infinite
	An agile ninja
	The ninja character
	Running
	Jump and Slide
	Add animator parameters
	Animator states and transitions
	Movement controls

	Randomly repeating obstacles
	Survival
	Parallax scrolling
	Add pizzazz with particle effects
	Displaying the timer
	The result
	How to expand the game?
	Summary

	Chapter 9: Game #4 – Physics Fun
	Overview
	The basics of physics
	Physics found in the real world

	Physics 2D
	What is Box2D?
	Steps to create bodies
	Let's simulate the world
	The environment
	Creating the scene
	Creating the background
	The foreground
	Adding the props

	Shooting the cannonballs
	Creating the cannonballs

	The final result
	How do we extend it?
	Summary

	Chapter 10: You Are Ready!
	Overview
	Audio
	Music
	Sound effects

	Saving and loading
	Creating a trigger
	Cameras
	Multiplayer
	Putting it all together
	The first scene
	The galaxy
	Platforms
	Triggers
	The lava
	UFO beam

	Adding audio
	The camera
	Saving and loading
	Space Buddy the alien
	Space Buddy script
	Positioning

	The second scene
	The final result

	Deployment
	Your journey ahead
	A plethora of resources
	Online resources
	Offline events
	Free resources
	Hosting games

	Social media
	Summary

	Index

